Chesapeake Research Consortium, Incorporated

NON-POINT SOURCE STUDIES ON CHESAPEAKE BAY:

III. Relationship between Bacterial Contamination and Land Use in the Rhode River Watershed, and Survival Studies of <u>Streptococcus</u> faecalis in the Estuary.

MAY 1 9 1978

CRC PUBLICATION NO. 56

The Johns Hopkins University Smithsonian Institution University of Maryland Virginia Institute of Marine Science

May 1977

QH 10年、5 0月50日 水の、5名

LIBRARY

ofthe

VIROINIA INSTITUTE of MARINE SCIENCE

NON-POINT SOURCE STUDIES ON CHESAPEAKE BAY:

III. Relationship between Bacterial Contamination and Land Use in the Rhode River Watershed, and Survival Studies of <u>Streptococcus</u> <u>faecalis</u> in the Estuary.

Maria A. Faust, Nancy M. Goff and Anne C. Jackson

Chesapeake Bay Center for Environmental Studies, Smithsonian Institution Route 4, Box 622 Edgewater, Maryland 21037

CRC Publication No. 56

TABLE OF CONTENTS

Page	No.
Abstract	
Summary	
Project Objective 4	
Introduction	
Methods	
Description of the Watershed	
Figure 1 - Location of Subwatershed Basins 9	
Table 1 - Land Use Categories	
Water Flow Estimation	
Bacterial Analyses	
A. Indicator Bacteria in Water Runoff 12	
Table 2 - Daily Mean Water Discharge 13	
1. Total and Fecal Coliform Bacteria 14	
Figure 2 - Identification of Total and Fecal Coliforms	
Table 3 - Scheme of Total and Fecal Coliform Identification	
2. Total and Fecal Streptococci 17	
Table 4 - Identification of Fecal Streptococci 18	
3. Salmonella	
B. Land-Use Fecal Coliform and Streptococcus Relationship	
1. Statistical Model	
2. Data Analysis	
C. Survival of Fecal Streptococci	

.

Page	No.
, uge	

1

1. Isolation	22
2. Survival Experiments	22
3. Cell Injury	23
4. Data Analysis	24
Results	
Water Flow	24
Figure 2 - Regression Analyses of Water Flow and Basin Characteristics	26
Fecal Coliform (FC) Concentrations	28
Table 5 - Mean FC Concentrations	29
Table 6 - Differences in FC concentrations between Seasons	30
Fecal Coliform Discharge	30
Table 7 - Differences in FC Concentrations between Basins	31
Table 8 - FC Discharge	32
Figure 3 - Regression Analyses of FC Discharge and Basin Characteristics	33
Table 9 - Coefficients of Determination for Seasonal Water Discharge and FC Discharge	36
Table 10 - Differences in FC Discharge/ha-day between Basins	36
Table 11 - Differences in FC Discharge/ha-day between Seasons	38
Table 12 - FC Discharge per Stream Length	39
Coliform Discharge - Land Use Relationship	40
Table 13 - Predicted Yearly and Seasonal FC Discharge from Pasture, Forest and Cultivated Land	40
Fecal Streptococci (FS) Concentrations	41
Table 14 - Mean FS Concentrations	42

ii

٩

Table 15 - Differences in FS Concentrations between	
Seasons	43
Table 16 - Differences in FS Concentrations between Basins	43
Fecal Streptococci (FS) Discharge	44
Table 17 - FS Monthly and Yearly Discharge	45
Figure 4 - Regression Analyses of FS Discharge and Basin Characteristics	46
Table 18 - Coefficients of Determination for Seasonal Water Discharge and FS Discharge	52
Table 19 - Difference in FS Discharge/ha-day between Seasons	53
Table 20 - Difference in FS Discharge/ha-day between Basins	53
Fecal Streptococci Discharge-Land Use Relationship	54
Table 21 - Predicted Yearly and Seasonal FS Discharge	54
Identification - Confirmation of Indicator Bacteria	54
1. Total Coliforms (TC)	54
2. Fecal Coliforms (FC)	55
3. Fecal Streptococci (FS)	55
4. Salmonella	55
Table 22 - Confirmation of TC	56
Table 23 - Confirmation of FS and Biotypes	56
5. Total Aerobic Heterotrophic Bacterial Population (TVC)	57
Survival and Injury of <u>Streptococcus</u> <u>faecalis</u> MC-5	57
1. Survival	57
Table 24 - Mean TVC	58
Figure 5 - Effect of Temperature on <u>S. faecalis</u> MC-5 Survival	59

i.

Page No.

Table 25 - Physical Parameters of Estuarine Water	51
Table 26 - Two Variable Linear Regression of S. <u>faecalis</u> MC-5 survival after 3 days in the Rhode River 6	53
Table 27 - Multiple Variable Regression Analysis of <u>S</u> . <u>faecalis</u> MC-5 Survival 6	53
2. Cell Injury and Repair 6	54
Table 28 - Effect of Standard and Gelatin PO4 Buffers on <u>S</u> . <u>faecalis</u> MC-5 Survival 6	55
Table 29 - Survival and Injury of <u>S</u> . <u>faecalis</u> MC-5 after 7 days in the Estuary 6	66
Figure 6 - Evaluation of Type of Injury of <u>S</u> . <u>faecalis</u> MC-5 48 hours in the Estuary 6	57
Discussion	59
Water Flow	9
Seasons	0
Basin Characteristics	רי
Land Use	וי
Survival	2
Cell Injury and Repair	3
	5
Literature Cited	6
Appendix	81
Fecal Coliform Bacteria in Surface Water Samples Effected by Water Runoff and Livestock Density	
Table 1 - Watershed 101	32
Table 2 - Watershed 102	33
Table 3 - Watershed 103	34

v	
	Page No.
Table 4 - Watershed 105	. 85
Table 5 - Watershed 106	86
Table 6 - Watershed 107	. 87
Table 7 - Watershed 108	. 88
Table 8 - FC Discharge/ha-month	89
Fecal Streptococcus in Surface Water Samples Effected by Water Runoff and Livestock Density	
Table 9 - Watershed 101	90
Table 10 - Watershed 102	91
Table 11 - Watershed 103	92
Table 12 - Watershed 105	93
Table 13 - Watershed 106	94
Table 14 - Watershed 107	95
Table 15 - Watershed 108	96
Total Coliform and Fecal Coliform Concentrations, FC/TC Ratios and TVC	
Tables 16 and 17 - Watershed 101	97
Tables 18 and 19 - Watershed 102	99
Tables 20 and 21 - Watershed 103	101
Tables 22 and 23 - Watershed 105	103
Tables 24 and 25 - Watershed 106	105
Tables 26 and 27 - Watershed 107	. 107
Tables 28 and 29 - Watershed 108	. 109
Total Streptococci and Fecal Streptococci, FC/FS Ratios and Salmonella-like Bacteria	
Tables 30 and 31 - Watershed 101	. 111
Tables 32 and 33 - Watershed 102	113

Tables	34	and	35	-	Watershed	103	•	•	•	•	•	•	•	•	•	•	•	•	115
Tables	36	and	37	-	Watershed	105	•	•	•	•	•	•	•	•	•	•	•	•	117
Tables	38	and	39	-	Watershed	106	•	•	•	•	•	•	•	•	•	•	•	•	119
Tables	40	and	41		Watershed	107	•	•	•	•	•	•	•	•	•	•	•	•	121
Tables	42	and	43	-	Watershed	108	•		•	•	•	•	•		•	•		•	123

ABSTRACT

The contribution of 983 hectare of rural watershed to the fecal coliform (FC) and fecal streptococci (FS) pollution in water runoff entering the Rhode River was examined. The survival of <u>Streptococcus faecalis</u> MC-5 of fecal origin in the Rhode River estuary as affected by time, water temperature, dissolved oxygen, salinity and montmorillonite in diffusion chambers was determined.

As a result of this study the following conclusions were made: 1. The effect of basin characteristics was the same on FC and FS discharge and on water flow; 2. Fecal coliform pollution in runoff water varies with the seasons of the year; 3. The contribution of each land use component to FC and FS discharge in a multiple land use watershed can be calculated by the use of a statistical model; 4. Water temperature is the most important factor in predicting fecal streptococci survival from point and non-point sources in assessing water quality in an estuarine system.

The following publication resulted from this investigation: Faust, M. A. and N. M. Goff, 1977. Basin size, water flow and land-use effects of fecal coliform pollution from a rural watershed. <u>In</u> Watershed Research in Eastern North America. Chesapeake Bay Center for Environmental Studies, Smithsonian Institution, Edgewater, Md. Feb. 28 - March 3, 1977. Smithsonian Institution publication.

-1-

SUMMARY

A comprehensive study was undertaken on the effects of a series of environmental variables on fecal coliform (FC) and fecal streptococci (FS) discharge from 983 ha of Rhode River watershed. Seven subwatershed basins, ranging in size from 28 to 254 ha, were instrumented to monitor water discharge rates. Of the monitored watershed area, 61% was forest and old field, 16% was cultivated cropland, 18% was pasture, while the remaining 5% was residential and fresh-water wet areas. The average human and livestock densities of these basins are 0.31 person ha^{-1} and 0.53 livestock ha^{-1} . Water discharge estimated by weekly spot sampling of water flow was significantly correlated with weekly automated flow measurements ($R^2 = 0.992$). Therefore, weekly spot sampling data was used to establish FC discharge from the basins. Water runoff was positively correlated with basin size $(R^2 =$ 0.973) and stream length ($R^2 = 0.922$). Fecal coliform discharge was also positively correlated with water flow at all weirs at all seasons, with stream length ($R^2 = 0.799$) and with basin size ($R^2 = 0.900$). Fecal coliform discharge from three land uses was also estimated. From pasture the discharge was 89 x 10^9 FC ha-year⁻¹, from forest 22.4 x 10^9 FC ha-year⁻¹ and from cultivated land 19.8 x 10^9 FC ha-year⁻¹. From the entire study area 68% of FC was discharged from pasture, 17% from forest and 15% from cultivated land.

Fecal streptococci discharge was governed by the same environmental variables and basin characteristics as FC. Discharge of FS was positively correlated with water flow at all weirs at all seasons, with stream length $(R^2 = 0.717)$ and with basin size $(R^2 = 0.772)$. Larger basins discharged

-2-

more bacteria per year than smaller basins and also had larger proportion of pasture of the total basin area. Fecal streptococci discharge from three land uses were: from pasture 15.11 x 10^{10} FS ha-year⁻¹, from forest 0.95 x 10^{10} FS ha-year⁻¹ and from cultivated land 1.67 x 10^{10} FS ha-year⁻¹. Thus, 85% of total FS discharge was derived from pasture, 9.4% from cultivated and 4.4% from forested areas.

Survival of <u>S</u>. <u>faecalis</u> MC-5 of fecal origin in an estuarine environment as affected by selected physical parameters in diffusion chambers has been elucidated. Water temperature, time, dissolved oxygen, salinity and montmorillonite were recorded simultaneously and viable cell numbers were estimated. The survival of bacteria varied seasonally. Montmorillonite addition did not extend survival of <u>S</u>. <u>faecalis</u> MC-5. The slope between viable cell numbers and water temperature increased about 100% for each 10 C increment in temperature and gave a correlation coefficient of r = 0.892. A similar correlation coefficient r = 0.569, was obtained between water temperature and t 1/2 of the initial cell population. In all experiments regressions were performed considering all variables after bacteria had been in the Rhode River environment for 3 days. Coefficient of multiple determination was estimated as $R^2 = 0.753$. Approximately 75.3% of the variance of viable cell numbers can be explained by variation in water temperature, dissolved oxygen, and salinity.

-3-

PROJECT OBJECTIVE

- To estimate concentrations and total discharge of fecal coliform, fecal streptococci,salmonella and total viable aerobic heterotrophic bacteria on a seasonal basis, per unit watershed area of a series of land use types characteristic of the Chesapeake Bay region.
- 2. To determine the relationship between water discharge and bacteria discharge affected by basin characteristics such as basin size, stream length, drainage density and land use practices at 7 Rhode River basins from non-point sources.
- 3. To examine these factors and the probability of calculating fecal bacterial discharge from single land use areas, namely pasture, cultivated and forest land which may contribute significantly to the bacterial pollution of the estuary.
- 4. To assess the effect of physical parameters, such as time, temperature, dissolved oxygen, salinity and clay concentrations on the <u>in situ</u> survival of <u>Streptococcus faecalis</u> within the tidal waters of the Rhode River estuary.

-4-

INTRODUCTION

The presence of pathogenic bacteria in water runoff from a rural and urban area is a major concern among the many sources of water pollution. This type of pollution can not be corrected by usual sanitary treatment practices (19, 29, 35, 36). During the past two years extensive data have related the presence of fecal coliform (FC) bacteria to runoff water from the Rhode River watershed (14, 15). Thus far no comparison had been made between FC and fecal Streptococci (FS) contribution from the watershed. Estimation of FC and other indicator bacteria from the watershed would allow a more complete assessment of fecal pollution of the entire Rhode River watershed-estuary. Furthermore, a comparison on the fecal pollution contributed by a rural watershed would give us valuable information about the presence of man, land use practices and water quality.

Changes in land use or man made disturbances in the watershed almost certainly effect the rate of indicator bacterial discharge from the land. Information is limited however, on two key factors: (1) the dependence of microbial densities on basin characteristics and the hydrological regime of the watershed and (2) the contribution of various land use practices to the level of indicator bacteria in the runoff.

Fecal coliform bacteria levels in the estuaries of Chesapeake Bay is very important, because presently it is the major indicator organism of water quality for shellfish production (2). If FC numbers exceed 14 FC MPN/100 ml of water for a period of time, the area is considered unsafe for shellfish harvesting.

The contribution of watershed runoff to pollution depends on the characteristics of the watershed and the physical-chemical characteristics of the

-5-

aquatic environment which determine the persistence of fecal bacteria. Coliform levels in water runoff have been reported to depend on the rates of water discharge (13, 27), hydrologic regime of the stream (36), natural background coliform concentrations and soil types (3, 18, 27) seasonal differences (11, 14, 15, 21, 29) nutrient availability (23) and sediment load (24). The survival of coliform bacteria in the estuary depends on the physical-chemical conditions of the aquatic environment (16, 18) which change seasonally. Their concentrations also depend upon their rate of dilution in a tidal estuary (14, 25).

Most studies have been concerned with watersheds of fresh-water rivers. Some investigators studied relatively small watersheds 1-25 ha in size (21, 27, 36), others studied large watersheds of rivers (29). A few studies which touched upon saline estuarine waters determined the density of coliform bacteria in the water only, without surveying the contribution of the watershed in detail (7, 17, 31, 34).

of

We have measured the contribution of 849 ha/rural watershed to the FC pollution of the Rhode River (11, 14, 15). This rural watershed contributed substantial quantities of FC to the estuary (11, 14). We have correlated FC numbers with volume of water runoff, watershed area (ha) and domesticated animal density of each sub-watersheds of the Rhode River under study. Bacterial flora in the runoff water changed seasonally reaching the highest values in May, June and December. Fecal coliforms reached levels in the runoff 1.1 x 10^9 bacterial/ha-day or 5.3 x 10^9 bacteria/day-animal. From the FC discharge and survival data, we estimated that 2600 m³ of well mixed receiving water was needed for every ha of watershed area not to exceed the safe water standard. Today, knowing the FC discharge data at the weir sites,

-6-

we can calculate and predict the water quality standard for shellfish harvesting along the RR estuary in the portion of the river to which the rural watershed contributes FC bacteria.

An essential part of the fecal pollution in the water is the knowledge of the survival of fecal bacteria in the estuary (16, 37). The survival rate of FC is longer at low water temperatures (0-10 C) and the bacteria die off quickly when water temperature exceeds 20 C. Bacterial dilution in and mixing by the tidal movement and wind speed/addition to water temperatures greatly affect bacterial survival.

Fecal streptococci are also widely distributed in the environment (18, 19). Fecal streptococci have been recovered from rivers and streams in remote areas devoid of any apparent human fecal contamination as well as from urban streams subjected to fecal pollution from humans and other animals. Unfortunately much less data is available about their presence in the runoff water from rural watersheds.

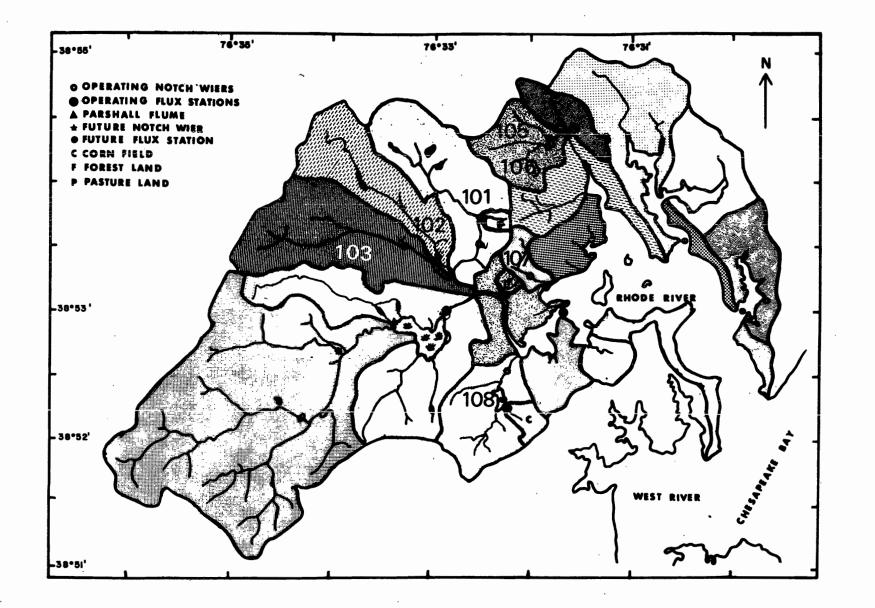
This report presents information concerning two areas: 1. the extent of stream pollution regarding overland transport of indicator bacteria as a function of basin-wide land use; 2. survival of <u>S</u>. <u>faecalis</u> in the estuarine environment. More specifically: 1. We have estimated FC and FS discharge in water runoff by surveying the relationship between water discharge and bacterial discharge affected by basin characteristics such as basin size, stream length, drainage density, and land use practices at 7 Rhode River basins. We examined these factors and the probability of calculating total FC and FS discharge from single land use area, namely pasture, cultivated and forest land which may contribute significantly to the FC pollution of receiving estuarine waters of the Chesapeake Bay. 2. Survival of S. faecalis was

-7-

investigated in diffusion chambers exposed to a natural estuarine environment. The effect of physical parameters such as time, temperature, dissolved oxygen, salinity and clay concentrations on the <u>in situ</u> survival of <u>S. faecalis</u> were elucidated. The possibility of cell injury was also determined by comparison of detection and enumeration of <u>S. faecalis</u> populations on nutritionally rich non-selective versus selective media.

MATERIALS AND METHODS

Description of the Watershed


The Rhode River watershed is located on the western shore of the Chesapeake Bay, south of Annapolis, Maryland and has a total watershed area of 3332 ha. The research presented here includes only 7 subwatershed basins as study areas shown in Fig. 1. The 7 basins have a total area of 983 ha (Table 1).

The designation and size of the seven basins are as follows: North Branch (101), 226 ha, Blue Jay Branch (102), 192 ha, Williamson Branch (103), 254 ha, and Steinlein Branch (108), 150 ha, all of which drain into Muddy Creek. Sellman North (105), 37 ha, and Sellman South (106), 95 ha, drain into Sellman Creek. Fox Creek (107), 28 ha, drains directly into Rhode River.

Land use of these basins is divided into the following categories: row crops, upland wet areas, tidal marshes, forest and old fields, pasture and nonsewered residential areas (Table 1). Of the 7 basins 61% include forest and old field, 16% cultivated cropland and 18% pasture, while the remaining 5% is residential and freshwater wet areas. Sanitary effluents are never deliberately a component of the stream flow, all of it being disposed of in septic tanks.

-8-

Fig. 1. Map illustrates the 24 subwatershed basins of the Rhode River. The full name of the seven monitored subwatershed basins and their abbreviations are as follows: North Branch Sellman Creek (105), South Branch Sellman Creek (106), Fox Creek (107), North Branch Muddy Creek (101), Blue Jay Branch Muddy Creek (102), Williamson Branch Muddy Creek (103), and Steinlein Branch Muddy Creek (108). The locations of the weirs are marked by open circles.

-0-

Basin	Pasture	Forest	Cultivated	Hayfield	Oldfield	Wetland	Residential	Total
			% of	Total Area				ha
101	26.9	37.9	9.5	0.3	18.4	0.1	6.0	225.8
102	18.3	47.3	18.2	3.4	6.7	0.5	5.6	191.7
103	12.5	62.7	2.0	4.1	14.0	0.2	4.5	253.5
105	2.1	31.2	13.3	4.0	49.0	0.0	0.4	37.5
106	20.6	44.9	12.8	15.4	5.0	0.0	1.3	95.3
107	9.0	59.6	8.6	0.0	16.6	0.7	5.5	28.2
108	10.8	38.7	23.4	9.5	13.5	0.9	3.2	150.2

Table 1. Land use categories of seven Rhode River basins.

.

.

The human and livestock populations of each basin varies. The average human and livestock densities of these watersheds are very low, comprised of 0.31 persons ha^{-1} and 0.53 livestock ha^{-1} basin area (14).

The geography of the Rhode River watershed is described in detail elsewhere (10). Low elevation aerial photos and topographic maps were used to determine basin size, stream length and land use. Drainage density was estimated by dividing stream length of all stream segments by the drainage basin area (26). Land use practices are updated by personal interviews of the farmers on the watershed. The rainfall averages 120-130 cm per year. The streams draining the watershed have low water discharge, except during extensive rainfall and are often dry during extended dry weather.

Water Flow Estimation

Water flow designated as integrated flow is estimated at sampling sites equipped with weirs of V-notch type design and are instrumented to monitor water discharge rates and to automatically take volume average water samples (11). Water flow of spot samples was estimated from the instantaneous flow rates when the samples were collected and expressed as flow/day, week, month and year at each weir location (Table 2).

Bacterial Analyses

A. Indicator Bacteria in Water Runoff

Pathogenic bacteria that are indicators of fecal pollution and water quality were estimated. These bacteria are total coliforms, fecal coliforms, fecal <u>Streptococci</u> and <u>Salmonella</u>. Water samples were collected in sterile screw-capped bottles by immersion in the stream with the opening held upstream just below the V-notch and returned to the laboratory within 3 hours of collection. Water discharge rates were estimated at the time of the day when

-12-

Month	101	102	Bas 103	ins 105	106	107	108
Month	_101	102	L x 10	6/day	100	107	100
December	7.19	10.52	8.14	_ *	_*	0.29	15.31
January	1.94	1.64	1.79	0.75	1.54	0.36	1.80
February	1.87	1.71	1.79	0.30	0.68	0.18	1.11
March	3.72	3.17	3.73	0.77	1.44	0.40	2.05
April	1.89	1.44	2.17	0.27	0.60	0.19	1.14
May	2.40	2.06	2.70	0.41	2.20	0.18	1.61
June	0.65	0.36	1.62	0.06	0.39	0.07	0.48
July	8.32	4.32	5.24	1.60	3.20	0.63	3.50
August	0.78	0.46	0.77	0.06	0.15	0.06	0 .2 8
September	1.82	1.38	1.47	0.27	0.56	0.06	1.09
October	2.28	1.74	2.03	0.33	0.80	_ **	1.49
November	1.74	1.42	2.06	0.25	0.65	_ **	1.34

•

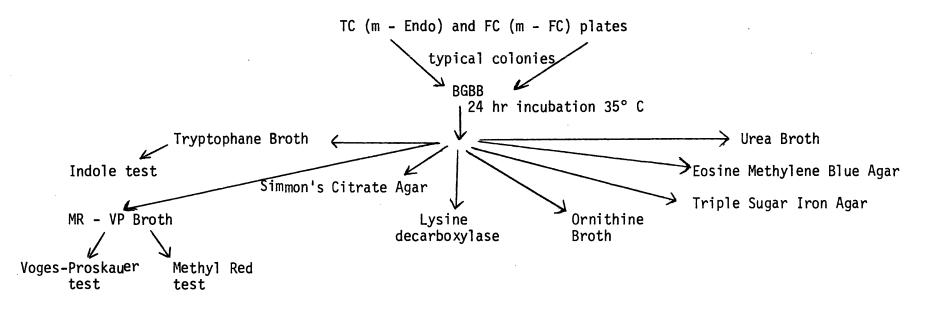
Table 2. Daily mean water discharge from seven Rhode River basins.

* Basin not yet instrumented to estimate water discharge.

** Weir inoperable

samples were taken at each weir location. Samples were collected at weekly intervals. Fecal coliform FS and Salmonella concentrations were estimated as recommended and described in <u>Standard Methods for Examination of Water</u> <u>and Waste Water</u> (1). Two methods were used, the Membrane Filter and Multiple Tube Fermentation techniques. The Multiple Tube Fermentation technique was used to estimate FC, FS and Salmonella from December 1974 through June 1975 and bacterial concentrations were expressed as MPN/100 ml. The Membrane Filter technique was employed from July through November 1975 and FC and FS numbers were expressed as cells/ml. To estimate bacteria discharge from a given basin, concentration of bacteria and water discharge rates were multiplied.

1. Total and Fecal Coliform Bacteria


a. Membrane Filter (MF) technique was used as follows: The size of the water sample was governed by the expected bacterial density. The filters were transferred to M-Endo Broth and incubated 22-24 hr at 35 C. Typical coliform colony with pink to dark red color with a metallic sheen, were counted and total coliforms present in the samples were estimated (1).

Determination of fecal coliforms by MF technique was as follows: Appropriate amount of water sample was filtered through a sterile membrane filter. The Filters were placed on M-FC broth and incubated for 24 hr at 44.5 C. Blue colonies characteristic of fecal coliforms were counted.

b. The Multiple Tube Fermentation technique was used to estimate
total coliform bacteria by inoculating into each 3 tubes of Lactose Broth
10, 1, and 0.1 ml of water samples. These test tubes were incubated for
24-48 hr at 35.5 C. Positive tubes that produced acid and gas were estimated
as total coliform bacteria in the sample.

-14-

Fig. 2. Identification of Total (TC) and Fecal Coliforms (FC) in selected water samples estimated between September and November 1975.

Tests on substrates	E. coli <u>Enterobacter</u> aerogenes cloacea		the second se	Citrobacter	Klebsiella
Indole	+	-		D (+)	-
Methyl red	+	-		+	d
Voges-Proskauer	-	+		-	D (+)
Citrate (Simmon's)	-	+	+	+	d (+)
Triple sugar Iron agar (H2S)	-	-		D (+)	-
Lactose	+ or x	+		+ or x	D
Lysine decarboxylase	+	(D) +	-	-	d (+)
Ornithine	d	+	+	d	-
Urea hydrolysed	-	d (-) or	(+)	(+)	d (-) (+)
Eosine Methylene Blue agar	+ (metallic sheen)				

Table 3.	Scheme of total and fecal coliforms identification according to	
	Blair et al (5).	

D = different reactions given by different species of a genus

d = different reactions given by different strains of a species or serotype

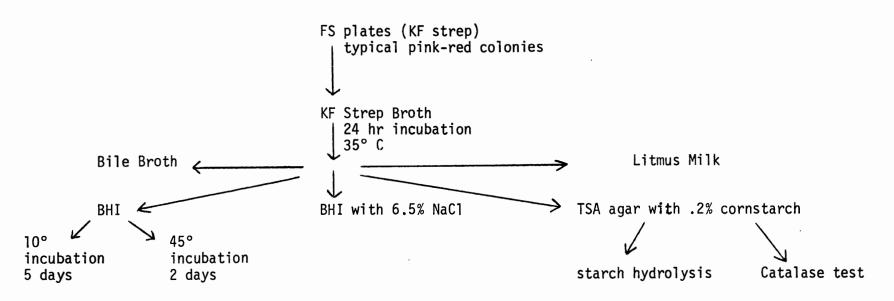
x = late or irregular positive

٠

Positive cultures were further tested for the presence of fecal coliforms. An aliquot of the positive cultures was transferred to test tubes containing EC Broth, incubated in a water bath for 24 hr at 44.5 C. Positive cultures producing acid and gas at the elevated temperature within 24 hr indicated the presence of fecal contamination.

c. Identification and confirmation of selected typical colonies taken from the surface of M-Endo and M-FC plates were used to confirm TC and FC bacteria in selected water samples between September and November, 1975 (Fig 2). The Indole- Methyl Red-Voges-Proskauer-citrate (IMViC), Triple Sugar Iron Agar (TSI), Eosine Methylene Blue (EMB) utilization by bacteria were tested as described in Standard Methods (1). Lysine and ornithine decarboxylase and urea hydrolyzing enzymes presence were used as described by Blair et al.(5) according to the scheme listed in Table 3.

2. Total and Fecal Streptococci


a. Multiple Tube Fermentation technique: sodium azide dextrose broth was used to determine MPN of total Streptococci. Turbidity was used to indicate positive result. Samples from positive tubes were transferred to ethyl violet azide broth. Test tubes showing turbidity and sedimentation with purple coloration were interpreted as positive indicating Fecal Streptococci (1).

b. Membrane Filtration technique: KF - Streptococcus broth was used to enumerate Streptococci. Colonies that appeared red to pink on the filters indicated FS contamination (20).

c. Identification - confirmation: Identification of FS bacteria was accomplished by selecting at random typical FS colonies from the membrane filters. The colonies were inoculated into KF - streptococcus broth at 35 C

-17-

Table. 4. Identification of Fecal Streptococci in selected water samples estimated between October 1975 through August 1976.

KF strep broth pink-red colonies Growth in brain-heart infusion broth within 2 days at 45° and 5 days at 10° C, with confirmation as catalase-negative and positive for growth in 40% bile broth growth at 45° growth at 45° only and 10° starch hydrolysis positive confirm with growth in BHI with 6.5% NaCl S. bovis - S. equinus Starch hydrolysis lactose fermentation acid only positive no change negative peptonization of S. equinus Atypical S. bovis Litmus milk S. faecalis (vegetation source) positive negative S. faecalis var. S. faecalis liquefaciens (warm-blooded (insect source) animal source)

for 24 hr. Cell suspensions were transferred to Brain-Heart Infusion Broth (BHI) for inculation at 10° and 45° C, to BHI with 6.5% Na Cl, Bile Broth, Litmus milk and Trypticase Soy Agar with 0.2% starch added. Typical colonies were identified by the scheme of Geldreich and Kenner (20) also listed in Fig. 4.

3. Salmonella

The Multiple-Tube Fermentation Technique dilution series of Selenite-Cystine Broth was used to determine the MPN of Salmonella-like organisms (1). Test tubes were incubated for 48 hrs. at 35° C. Turbidity was used to indicate a positive test. Samples from positive tests were streaked on Hektoen Enteric Agar and plates incubated for 24 hrs. at 35° C. Several positive cultures were further tested on Triple Sugar Iron Agar and slants incubated for 24 hrs. at 35° C. Suspected <u>Salmonella</u> organisms were tested further for phenylalanine deaminase activity. Negative phenylalanine deaminase tests indicated the presence of <u>Salmonella</u> in the water (5). Bacterial numbers were determined as MPN/100 ml of water.

4. Bacteria other than Pathogenic Bacteria

Water samples were diluted in sterile 0.01 M phosphate buffer pH 7.5 and plated on Nutrient agar collected from the weir stations. Each sample was plated in triplicate on the above media at each of two dilutions. Dilutions ranged from $10^1 - 10^4$, depending upon the numbers of the population expected to be present. Plates were incubated at room temperature (18-20° C) for seven days (1).

B. Land Use - Fecal Coliform and Streptococcus Relationships

 Statistical Model: The seven basins under consideration have complex land use patternswhich makes it difficult to determine indicator bacteria discharge from a specific land use. A statistical model which relates bacterial discharge to land use was used to determine the proportion of of FC and FS discharge originating from each/three land use categories: cultivated land (including residential areas and hay fields), pasture land and forested areas (including old fields and fresh water areas) (8). The model includes the area of land use in ha and the estimated FC or FS discharge values from each basin. By applying a linear model which relates land use to bacteria discharge, the proportion of FC or FS for each land use was estimated. No statistical weighing factors were used in the model for this application. Fecal coliform and streptococci discharge land-use relationship were estimated from yearly FC and FS discharge data from seven basins.

2. Data analysis: The relationship between water discharge, FC discharge, and basin characteristics was explored as it was of interest to obtain general equations for these parameters. For each treatment the dependent variable (y) was water discharge or FC discharge and independent variables (x) were basin size, stream length, drainage density. The data was analyzed by two methods: 1) A least squares regression analysis in the form Y = a + b X, giving the best fit of the data where a is the intercept and b is the slope; 2) Fecal coliform discharge and water discharge however, appeared to be related exponentially. The best fit of the data could be related by a parabolic regression equation of the form of $y = a \circ + a_1 x$ + $a_2 x^2$; y = FC discharged year⁻¹, x = water flow year⁻¹, and a_2 , a_1 and a_2 are constants. The program also calculated R^2 (the coefficient of determination, which gives the proportion of y explained by the equation), the F value and t-test (for testing the statistical significance of the equations). One asteric^{*} indicates statistically significant relationship at 95% probability levels and two asterics ** indicates statistically significant values at 99% probability level. All data compilation was done using HewlettPackard HP-9810 and PH-9830 calculators with extended memory, tape drive and typewriter.

C. Survival of Fecal Streptococci

1. Isolation: The bacterium used in this study was isolated from Muddy Creek within the Rhode River estuary. It was identified as <u>S</u>. <u>faecalis</u> by growth in KF-broth and on Brain-Heart Infusion Broth within 5 days at 10 C and within 2 days 45 C temperature, negative starch hydrolyzis, litmus milk peptonization and catalase negative reactions (20). This bacterium was designed as <u>S</u>. <u>faecalis</u> MC-5. All cultures used in the experiments were grown in trypticase soy broth (TSB) for 24 hr. at 37 C. Cells were harvested by centrifugation at 2900 rpm for 20 min. and were either washed twice with sterile standard phosphate buffer (16) or with gelatin phosphate buffer (4). The gelatin phosphate buffer consisted of 0.2% gelatin, 0.73% KH₂PO₄ and 0.37% K₂HPO₄, and the standard phosphate buffer consisted of 0.14% KH₂PO₄ and 0.17% K₂HPO₄ at pH 7.0. After the final wash, cells were resuspended and diluted in designated buffers to the desired population density using a Beckman DU Spectrophotometer set at 600 nm wave-length. Bacteria were diluted, plated, and counted according to <u>Standard Methods</u> (1).

2. Survival Experiments: Diffusion chambers were purchased from their designers McFeters and Stuart (23). Nucleopore filters of 0.45 µm pore size and 9.0 cm diameter (Nucleopore Corp.,Pleasanton Calif.) were used.Chambers and filters were sterilized using ultraviolet light before each chamber was filled with 20 ml cell suspensions as described previously (16). Three to five chambers were used in each treatment. Washed cell suspensions (107-108 cells/ml) in respectivebuffers were added to each chamber and exposed to an <u>in situ</u> estuarine environment. The effect of montmorillonite and illite on S. faecalis MC-5 survival was also determined as described previously (16).

3. Cell Injury: Experimental procedures to detect injury or death of <u>S</u>. <u>faecalis</u> MC-5 populations were similar as described by Bissonnette et. al. (4): Immediately after suspending the chambers in the Rhode River, 0.1 ml of <u>S</u>. <u>faecalis</u> was withdrawn from each chamber with a 1 ml syringe and designated as the 0 hr. sample. Other samples were taken from the chambers at 6, 8, 24, and 48 hr. of exposure to the estuarine water. Enumeration of <u>S</u>. <u>faecalis</u> was done using both types of buffer (phosphate and gelatin phosphate) and two types of media. Azide dextrose agar (DIFCO) was used as a selective medium and trypticase soy agar (TSA) was used as a nonselective medium. Samples were enumerated using the spread plate procedure. Plates were incubated for 24 hr. at 37 C. All platings were done in triplicate.

To determine whether <u>S. faecalis</u> MC-5 cells are injured by environmental whether stress in the estuary, and/injured cells have the capability to repair nonlethal injury was also tested as described by Bissonnette et. al. (4). A 4 ml cell suspension was taken immediately after immersing the chambers in the Rhode River and inoculated into 36 ml of trypticase soy broth (TSB). This sample was designated 0 hr, Day 0. A 0.1 ml sample was taken from the 36 ml of TSB every 20 min. for the first 2 hr, and every hr for the next four hrs, and serially diluted in standard phosphate buffer. The 36 ml of tryptic soy broth was incubated at 37 C between samples. All platings were done in triplicate on both azide dextrose agar (ADA) and on trypticase soy yeast agar (TSY) using spread plate procedure (4). Trypticase soy yeast agar consisted of trypticase soy agar, 0.5% dextrose, and 0.3% yeast extract. After the chambers were exposed in the Rhode River for 48 hr, a second 4 ml cell suspension was removed and inoculated into 36 ml of new TSB and treated similarly to that of the first day.

4. Data analysis: The survival of <u>S</u>. <u>faecalis</u> was also estimated by measuring simultaneously several ecological variables in the Rhode River. Two statistical analyses were performed on all the data. (i) Two variable linear regression, based on the relationship between two variables by using 7-day observations for each variable by a linear least-squares regression. A correlation coefficient (r) for each pair of variables were calculated. (ii) Multiple linear regression was also used to investigate the combined effects of several variables on S. faecalis as described in detail (16).

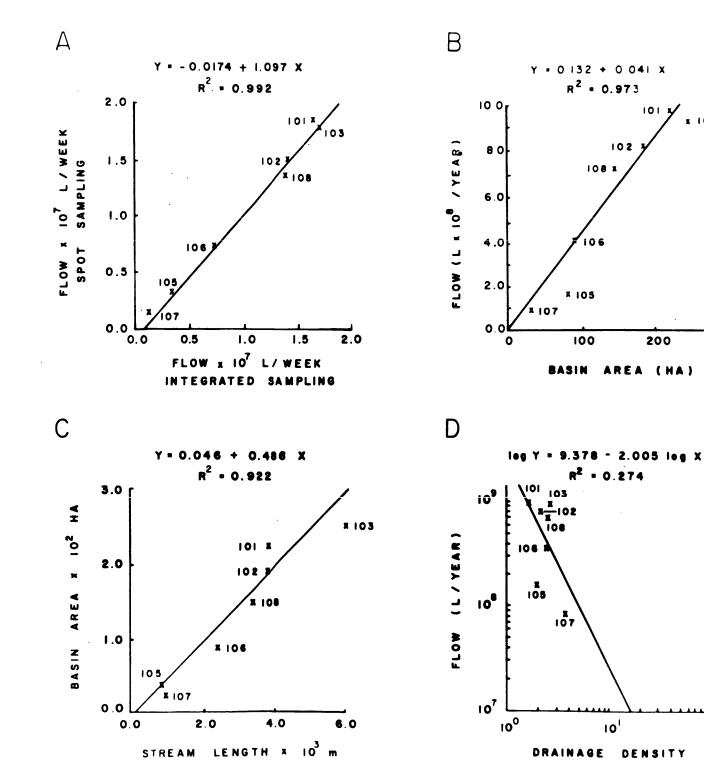
RESULTS

Water Flow

The pattern of water flow from the study sites changed seasonally (Table 2). Daily mean water flow at all seven basins ranged from a high of 8.32×10^6 1/day at basin 101 to a low of 0.06×10^6 1/day at basin 107 in August. Water flowed through all weirs during the entire water year 1974-75. Seasonal variations in water flow occurred. Flow was relatively low in May, June, August and November months. Water discharge was proportional to the size of the basin or the amount of precipitation which had fallen prior to the day of sample collection. The highest water discharge was recorded from the largest basins, 101, 102 and 103.

The average weekly water discharge for the entire year was calculated from one spot sample taken each week, and calculating the flow for the entire week, adding up individual weekly values and dividing them by the total number of weeks samples were taken. In average a total of 39 to 48 average weekly samples were collected per basin. The/water discharge ranged from 1.87 x 10^7 1 as high at basin 101 to 0.16 x 10^7 1 as low at basin 107. The water

-24-


discharge at the other basins were 1.83×10^7 1 at 103, 1.53×10^7 1 at 102, 1.40×10^7 1 at 108, 0.75×10^7 1 at 106, and 0.31×10^7 1 at 105 (Fig. 2a). Throughout this range the calculated flow, obtained from spot samples, and the integrated flow, determined by continuous recording discharge values correlated linearly (Fig. 2/a). A least squares regression analysis gave the best fit of the data: y (Flow L x 10^7 week⁻¹ of spot samples) = $-0.017 + 1.09 \times$ (Flow L x 10^7 week⁻¹ of integrated samples). The coefficient of variation was $R^2 = 0.992$ significant at the 99.9% probability level.

The same relationship existed for yearly total discharge of both spot and integrated water flow. Yearly discharge ranged from 9.73 to 7.28 x 10^8 1 year⁻¹ at high water discharging basins such as 101, 102, 103 and 108 and 0.84 to 0.62 x 10^8 1 year⁻¹ at low discharging basins 107, 105 and 106 respectively. The best fit of the data gave the following equation: Y (flow x 108 1 year⁻¹ of spot samples) = -0.0982 x 10^8 + (1.098 x 10^8) X (flow x 10^8 1 year⁻¹ of integrated flow). The coefficient of determination (R²) for these variables was 0.992, significant at the 99.9% probability level.

Water flow was also compared with the size of basin and the length of the stream for each of the 7 basins. Basin sizes ranged from 28 to 254 ha. Characteristics of these basins have been described in detail. The annual water discharge and the basin area were linearly and positively correlated (Fig. 2/b). A least squares regression equation gave the best fit of the data: Y (flow L x 10⁸ year⁻¹) = 0.132 + 0.041 X (basin size ha⁻¹) and a coefficient of variations of R^2 = 0.973 that was significant at the 99% probability level.

Basin size and stream length were also linearly and positively correlated

Fig. 2. Regression analyses of water flow and basin characteristics. Fig. 2/a. Linear relationship between flow of spot samples and flow of integrated samples. Slope: 1.097, intercept -0.0174, and coefficient of variation 0.992. Fig. 2/b. Linear relationship between yearly flow and basin area. Slope: 0.041, intercept 0.132, and coefficient of variation 0.973. Fig. 2/c. Linear relationship between basin area and stream length. Slope: 0.486, intercept 0.046, and coefficient of variation 0.922. Fig. 2/d. Linear relationship between yearly flow and drainage density. Slope: -2.005, intercept 9.378, and a coefficient of variations 0.274. Numbers 101 to 108 on each graph refer to the designated subwatershed basins.

-27=

x 103

300

102

(Fig. 2/c). A least squares regression equation of the data gave the best fit: Y (basin size ha⁻²) = 0.046 + 0.486 X (stream length m⁻³). The coefficient of variation was R^2 = 0.922, statistically significant at 99.9% probability level. However, annual water discharge appears to be inversely proportional to drainage density [stream length (m) divided be the drainage basin area (m²)] (26) (Fig. 2/d). A least squares regression equation gave the following relationship: log Y (flow L x 10⁸ year⁻¹) = 9.378 -2.005 log X (drainage density). The coefficient of variations was R^2 = 0.274 which was statistically not significant at 95% probability level.

Fecal Coliform Concentrations

FC concentrations were lowest during winter and fall and highest during summer (Table 5). The range of FC concentrations were very wide however, including low and high values in all seasons. The range of FC seasonal mean concentrations were as follows: winter 153 to 699 FC 100 ml⁻¹; spring 238 to 575 FC 100 ml⁻¹; summer 824 to 1239 FC 100 ml⁻¹; and fall 164 to 416 FC 100 ml⁻¹ respectively.

A one way analysis of variance was used to test whether there was a difference in FC concentrations between seasons (Table 6). It appeared that FC concentrations were significantly higher in summer at most weirs (Tables 5 and 6). No detectable differences existed, however, in FC concentrations between

winter, spring and fall seasons. The yearly mean FC concentrations ranged from 387 to 734 FC 100 ml-1 at the various basins (Table 5). The standard deviation was equal to or greater than the mean in most cases.

A Paired t-test was also used to distinguish differences in FC concentrations between basins (Table 7). This analysis indicated that FC concentrations from basin 106 were significantly different than those

			concentration/100	
Basin	Season	Mean	±S.D.	Range
101	Winter	286	354	11 - 1100
101				
	Spring	575	870	4 - 2400
	Summer	1125	1079	7 - 2400
	Fall	219	264	10 - 960
	Year	581	821	4 - 2400
102	Winter	348	332	43 - 1100
	Spring	344	645	3 - 2400
	Summer	1189	1103	3 - 2400
	Fall	345	566	50 - 2200
	Year	561	800	3 - 2400
103	Winter	409	818	28 - 2400
105	Spring	245	653	3 - 2400
		1003	1116	4 - 2400
	Summer		668	20 - 2500
	Fall	288		
	Year	472	851	4 - 2500
105	Winter	173	151	15 - 460
	Spring	314	641	4 - 2400
	Summer	1136	1055	3 - 2400
	Fall	308	297	35 - 1000
	Year	523	766	3 - 2400
106	Winter	699	815	210 - 2400
100	Spring	565	827	43 - 2400
		1239	1123	3 - 2400
	Summer	416	306	140 - 1200
	Fall			
	Year	734	862	3 - 2400
107	Winter	153	384	3 - 1100
	Spring	238	661	3 - 2400
	Summer	1108	1100	3 - 2400
	Fall	185	353	3 - 1200
	Year	450	809	3 - 2400
108	Winter	154	150	20 - 460
100	Spring	333	688	3 - 2400
	Summer	824	969	4 - 2400
	Fall	164	133	18 - 500
		387	668	3 - 2400
	Year	307	000	5 - 2400
A11	Winter	310	493	3 - 2400
Weirs	Spring	373	702	3 - 2400
	Summer	1090	1048	3 - 2400
	Fall	276	404	3 - 2500
	Year	529	798	3 - 2500

.

Table 5: Mean Fecal Coliform concentration in water runoff from seven Rhode River basins.

from basins 102, 103 and 105. Additionally, FC concentrations from basin 102 were different than those from basin 107 and FC concentrations from basin 103 were different than those from basin 105. No difference was found in FC concentrations between other basins.

Table 6. Estimation of differences in fecal coliform concentrations in waterrunoff betweenseasons using one way analysis of variance.

Basin									
Seasons	101	102	103	105	106	107	108	A11	
	F - values Bas								
winter vs spring	0.87	0.01	0.25	0.31	0.12	0.05	0.57	0.34	
winter vs summer	4.99*	4.83*	1.62	5.62*	1.25	5.50*	4.16	26.68**	
winter vs fall	0.09	0.00	0.13	1.24	1.28	0.03	0.02	0.21	
spring vs summer	2.05	5.57*	4.28	5.76*	3.03	5.96*	2.21	28.96**	
spring vs fall	1.84	0.00	0.02	0.00	0.37	0.06	0.75	1.30	
summer vs fall	7.99**	5.92*	3.76	7.42*	6.50*	8.28**	5.91*	47.16**	
All seasons	3.65*	3.94*	2.10	4.96**	2.46	5.02**	3.08*	23.08**	

Fecal Coliform Discharge

Although FC concentrations and FC discharge appear to follow the general trend, the calculation of total FC discharge is necessary to obtain meaningful data which can be used for estimating FC discharge from each basin. The total FC discharge ranged from 60 x 10^{10} to 876 x 10^{10} FC year-1 depending on basin (Table 8). The lowest FC discharge was estimated from basin 107 and the largest from basin 101. In general when monthly FC discharge was high at one

basin it was high at all other basins. The FC discharge values for March and July are comparatively high. This is due to the fact that samples were collected during storm events of significant size, which inflated the flow rate estimates and FC concentration. The highest monthly FC discharge, thus,occurred in the summer and the lowest in the fall and winter.

Table 7. Estimation of differences in fecal coliform concentrations in water runoff between basins using the Paired t-test.

	Basins									
Basins	101	102	103	105	106	107	108			
			t-value							
101		0.02	1.18	0.61	1.55	1.26	0.91			
102		-	0.51	0.56	2.21*	2.81*	1.68			
103		-	-	2.37*	3.65**	0.61	0.60			
105	-	-	-	-	3.02**	0.32	1.37			
106	-	_	-	-	-	0.15	0.90			
107	-	-	-	-	-	-	0.24			

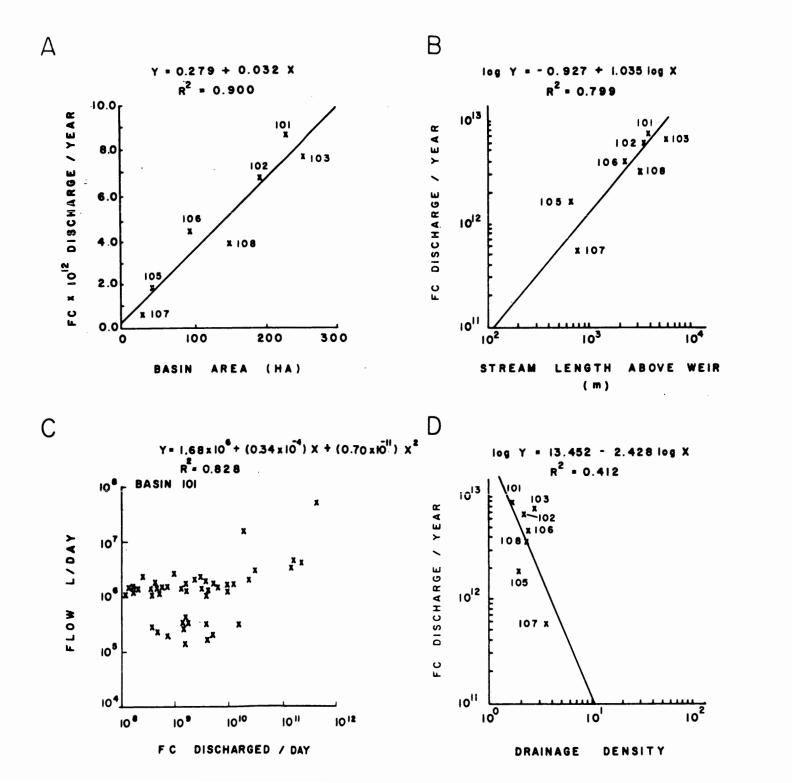
Fecal coliform yearly discharge depended on the size of basin (Fig. 3/a). The larger sized basins discharged more FC bacteria year⁻¹ than smaller basins (Table 8). A least squares regression analysis gave a linear positive relationship: Y (FC x 10^{12} discharged year⁻¹) = 0.279 + 0.032 X (basin size, ha). The coefficient of variation was R² = 0.900 significant at 95% probability level.

A linear positive relationship also existed between FC discharge and

Months	101	102	103	Basins 105	106	107	108
1974-75	<u>101</u>	102	FC x 1010			107	100
December	24.69	152.36	28.42	-	-	3.97	53.67
January	9.24	13.88	1.34	3.19	65.35	0.02	7.12
February	4.55	7.72	8.05	0.91	10.49	0.29	4.71
March	205.60	108.32	126.73	8.08	9 0.55	9.64	44.82
April	14.86	20.69	97.58	5.04	8.35	1.00	2.55
May	0.54	0.18	0.29	0.24	8.39	0.11	0.11
June	18.43	13.75	102.23	0.66	4.53	2.45	9.95
July	549.32	283.60	343.33	106.63	212.22	41.27	225.79
August	30.22	47.14	39.95	27.57	14.50	1.47	6.79
September	5.80	6.66	6.42	16.70	3.95	0.32	4.62
October	7.23	7.10	4.91	12.10	11.16	_*	6.61
November	5.87	6.87	3.54	3.11	4.90	_*	2.74
Annual	876.36	668.28	762.79	184.23	434.39	60.49	369.68

Table 8: Fecal coliform monthly discharge from seven Rhode River basins.

* = weir inoperable


7

.

. † .

.

Fig. 3. Regression analyses of Fecal Coliform (FC) yearly discharge, basin characteristics and water discharge. Fig. 3/a. Linear relationship between FC discharge and basin area. Slope: 0.032, intercept 0.279, and coefficient of determination 0.900. Fig. 3/b. Linear relationship between FC discharge and stream length. Slope: 1035, intercept -0.927, and coefficient of variation 0.799. Fig. 3/c. Parabolic relationship between water flow and FC discharge. Intercept 1.68 x 10⁶, coefficients a1 0.34 x 10-4, a2 0.70 x 10-11, and coefficient of variations 0.828. Fig. 3/d. Linear relationship between FC discharge and drainage density. Slope -2.428, intercept 13.45 and coefficient of variation 0.412. Numbers 101 to 108 on each graph refer to the designated subwatershed basins.

-34-

stream length (Fig. 3/b). A least squares regression analysis gave the relationship: log Y (FC x 10^{12} discharged year-1) = - 0.927 + 1.035 log X (stream length m-3). The coefficient of determination was R² = 0.799,

significant at the 95% probability level. Obviously larger basins have longer streams and if FC discharge is expressed based on either basin size or on stream length the relationships are almost the same.

Water flow carried FC bacteria from the watershed into the Rhode River estuarine waters (15). Several investigators reported that the degree of discharge of sediments and nutrients depends on rate of water discharge (6, 13). Evans and Owens (12) also reported that the rate of water flow is also related to the bacterial discharge. These investigators (12) studied a 0.7 ha area and investigated the relationship between the soil bacteria and land-drainage water discharge. We found a similar relationship between FC discharge and water discharge. FC discharge could be related to flow rate by a parabolic regression equation. Increased water flow increased FC discharge proportionally at an exponential rate from basin 102 (Fig. 3/c). Fecal coliform discharge was little affected until water flow increased to about 2 x 10^{6} l/day. After this flow rate FC discharge increased rapidly with increasing water flow. This indicates that, as the water flow increases, its importance in determining the rate of FC discharge increases at an exponential rate. This relationship is expressed by the equation Y = 1.68 x $10^6 + (0.34 \times 10^{-4}) \times + (0.70 \times 10^{-11}) \times^2$ in which X = flow 1 x 10^6 day⁻¹ and Y = FC x 10^9 discharged day⁻¹. The coefficient of determination was R² = 0.828.

The relationship between water flow and FC discharge was analyzed for all seasons and for the year at each basin (Table 9). The coefficients of determination (R^2) were obtained for the data. A two variable parabolic regression

-35-

Table 9. Coefficients of determination for seasonal water discharge $(Y)^a$ against seasonal FC discharge $(X)^b$ from seven Rhode River basins using two variable parabolic regression equation.

Seasons 1974-75	101	102 Co	103	Basins 105 t of Det	106 erminati	107 on (R ²)	108
Winter	0.98*	0.99*	0.15	0.97*	0.97*	0.83*	0.99*
Spring	0.79*	0.38	0.91*	0.52*	0.57*	0.39	0.53*
Summer	0.99*	0.99*	0.99*	0.99*	0.99*	0.99*	0.99*
Fall	0.40	0.51*	0.74*	0.51*	0.72*	0.99*	0.36
Annual	0.83*	0.75*	0.53*	0.84*	0.88*	0.76*	0.65*
Nc	48	47	46	46	46	39	48

a = Flow L x 10^6 /day; b = FC x 10^6 discharged/day; c = number of weeks sampled during the year

Table 10. Estimation of difference in Fecal coliform discharge/ha day between basins using the paired t-test.

			Bas	in						
Deedu	101	102	103	105	106	107	108			
Basin t-value										
101	-	0.08	1.19	0.16	1.65	1.74	1.50			
102	-	-	1.04	0.44	1.53	2.05*	1.49			
103	-	-	-	0.64	1.57	1.19	0.26			
105	-	-	-	-	1.43	0.96	1.11			
106	-	-	-	-	-	1.87	2.38*			
107	-	-	-	-	-	-	0.76			

analysis indicated that 83-99% of the variation in FC discharge can be explained with water discharge during the spring and summer and 51-79% during fall and winter. Yearly R^2 values ranged from 0.53 to 0.88 and were significant at the 95% probability level.

Fecal coliform discharge per unit watershed area was also calculated. FC discharge from the 7 basins were as follows: 3.9×10^{10} /ha year at basin 101; 3.5×10^{10} /ha year at basin 102; 3.0×10^{10} ha year at basin 103; 4.9×10^{10} /ha year at basin 105; 4.6×10^{10} /ha year at basin 106; 2.1×10^{10} /ha year at basin 107; and 2.4×10^{10} /ha year at basin 108. The variation in FC discharge/ha year was much smaller from the various basins than the FC discharge/year. FC discharge/ha year was the highest (4.6 and 4.9 $\times 10^{10}$) from basins 105 and 106 and the lowest($2.1 \text{ and } 2.4 \times 10^{10}$) from basins 107 and 108. In contrast, when FC discharge was calculated only on the yearly basis (FC discharge/year) the highest discharge was 8.7×10^{12} from basin 101 and the lowest 0.6 $\times 10^{12}$ from basin 107 (Table 8).

The paired t-test was also used to distinguish differences in FC discharge/ha year between basins (Table 10). The results indicate significant difference between basins 102 and 107, and 106 and 108. However, no differenceswere found between the other basins. Similarly, no differences were found in FC discharge/ha year between basins using oneway analysis of variance (Table 11).

When the FC discharge/year per unit length of stream was calculated, results are very similar to those expressed as FC discharge/ha year (Table 12). The FC discharge per unit stream length was as follows: 2.35×10^{12} FC/Km year at basin 101; 1.67×10^{12} FC/Km year at basin 102; 1.12×10^{12} FC/Km year at basin 103; 2.56×10^{12} FC/Km year at basin 105; 1.87×10^{12} FC/Km year at

	Basins								
Seasons	101	102	103	105	106	107	108		
Winter vs spring	1.48	0.36	F-val 0.27	<u>ues</u> 0.54	0.06	0.11	0.44		
Winter vs summer	0.90	0.06	1.33	0.62	0.11	0.89	0.41		
Winter vs fall	0.05	1.12	0.02	0.01	1.75	0.06	1.59		
Spring vs summer	0.46	0.75	1.34	1.04	0.39	1.10	1.07		
Spring vs fall	2.13	0.40	0.49	0.78	1.80	0.15	0.99		
Summer vs fall	1.25	1.57	2.26	1.16	1.20	0.50	1.45		
All seasons	0.91	0.68	1.50	0.93	0.59	0.78	0.96		

Table 11. Estimation of difference in fecal coliform discharge/ ha day between seasons using one way analysis of variance.

basin 106; 0.59 x 10^{12} FC/Km year at basin 107; and 1.01 x 10^{12} FC/Km year at basin 108 respectively. Basin 105 discharged FC at the highest rate, discharging 4.3 times more FC/Km than did the lowest FC discharging basin, 107. Therefore, it is better to express FC discharge per unit area than FC discharge per unit length of stream.

Ongley (30) indicated that drainage density can be used as a characterization of watersheds in estimating loading rates into receiving waters. In the Rhode River subbasins, drainage density and FC discharge do not appear closely related (Fig 3/d). A least squares regression analysis gave the following relationship, log Y (FC x 10^{12} discharge/ year) = 13.45 - 2.48 log X (drainage density). The coefficient of variation was R² = 0.415 and it was not significant at the 95% probability level.

Basin	FC x 10 ² Discharged/year	Stream Length Km	FC x 10 ¹² Discharge/Km
101	8.7	3.7	2.3
102	6.7	4.0	1.7
103	7.6	6.8	1.1
105	1.8	0.7	2.5
106	4.3	2.3	1.9
107	0.6	1.0	0.6
108	3.7	3.6	1.0

.

Table 12.	Fecal	coliform	discharged	per	unit	stream	length	from	seven	Rhode
		basins.	-							

Coliform Discharge - Land Use Relationship

The proportion of yearly FC discharge from 3 land use types was determined by applying a statistical model which relates land use to FC discharge (Table 13). From pasture the discharge was 89 x 10^9 FC/ha year, from forest 22.4 x 10^9 FC/ha year and from cultivated land 19.8 x 10^9 FC/ha year. The FC discharge rates from each land use type varied seasonally. Pasture discharge ranged from 0.1 to 62.1 x 10^9 FC/season; forest discharge ranged from -1.7 to 15.3 x 10^9 FC/season; and cultivated land discharge ranged from -8.6 to 23.7 x 10^9 FC/season. The pattern of FC discharge from pasture and forest was similar. FC discharge was the highest in summer followed by a decreased magnitude in spring, winter and fall. In contrast, the cultivated

Seasons	Pasture Forest FC x 10 ⁹ discharged		Cultivated /ha				
Winter	0.8	-1.7	23.7				
Spring	26.0	8.2	- 8.6				
Summer	62.1	15.3	1.9				
Fall	0.1	0.6	2.8				
Year	89.0	22.4	19.8				

Table 13: Predicted yearly and seasonal fecal coliform discharge from pasture, forest and cultivated areas from seven basins.

land discharged the highest number of cells in winter. This is probably due to the practice of some farmers **s**preading manure on the soil during the winter months.

Negative discharge values, which appeared in the forest area in winter and in cultivated land in spring were interpreted to mean that a particular land use served as depository rather than as a source of FC cells. However, since these negative values are small in comparison to FC discharge in **ot**her seasons, they may indicate that FC discharge was either zero or very low.

Fecal Streptococci, Concentration

Fecal Streptococci (FS) concentrations in water runoff ranged from 680-1701 FS/100ml for the year (Table 14). The highest FS concentrations were estimated from the smallest basin 107 and the lowest FS concentration from the largest basin 103. The average yearly FS concentrations for all basins were 1067 FS/100ml. The ratio of the standard deviation to the sample mean was relatively large in most cases. Fecal Streptococci concentrations were low during winter and spring and high during summer and fall (Table 14). The range of seasonal mean FS concentrations were as follows: winter 15-724 FS/100 ml; spring 69 to 560 FS/100ml; summer 1441-4161/100ml; and fall 656-1038 FS/100ml respectively. The one way analysis of variance was used to estimate differences in FS concentrations between seasons (Table 15). It appeared that FS concentrations were significantly higher and different in summer from those of other seasons (Tables 14 and 15). However, basin 107 was an exception, where no detectable difference in FS concentrations was found between seasons.

A paired t-test was used to estimate differences in FS concentration between basins (Table 16). It appeared that FS concentrations from basin 103 were significantly lower and different than those from basins 101, 102, 105 and 106 (Tables 14 and 16). Fecal

-41-

Basin 	Season	FS concentration/100ml					
		Mean	±s.d.	Range			
101	winter	724	1122	15 - 2400			
	spring	541	873	9 - 2400			
	summer	2005	679	460 - 2800			
	fall	656	928	50 - 3600			
	year	1035	1052	9 - 3600			
102	winter	360	502	23 - 1100			
	spring	159	311	3 - 1100			
	summer	2250	902	1100 - 3400			
	fall	1038	1700	70 - 6600			
	year	1047	1353	3 - 6600			
103	winter	181	193	23 - 460			
	spring	69	126	4 - 460			
	summer	1441	892	240 - 2400			
	fall	801	1582	70 - 6000			
	year	680	1126	4 - 6000			
105	winter	74	112	7 - 240			
	spring	300	461	4 - 1100			
	summer	2139	1061	210 - 4000			
	fall	869	1340	25 - 5100			
	year	1007	1240	4 - 5100			
106	winter	702	476	150 - 1100			
	spring	560	697	11 - 2400			
	summer	2058	759	700 - 3300			
	fall	831	1423	110 - 5500			
	year	1108	1144	11 - 5500			
107	winter	15	8	3 - 21			
	spring	499	853	4 - 2400			
	summer	4161	7215	1100 - 28000			
	fall	961	1296	30 - 4600			
	year	1701	4280	3 - 28000			
108	winter	67	116	3 - 240			
	spring	248	652	9 - 2400			
	summer	1835	632	1100 - 2400			
	fall	777	1282	25 - 4900			
	year	871	1086	3 - 4900			
irs	winter	303	530	3 - 2400			
	spring	339	630	3 - 2400			
	Summer fall	2289 847	2898 1342	210 - 28000			
	year	1067	1956	25 - 6600 3 - 28000			

Table 14. Mean Fecal Streptococcus concentrations in water runoff from seven Rhode River basins.

			Basins				
Seasons	101	102	103	105	106	107	108
Winter vs Spring	0. 12	0.96	1.91	alues 0.91	0.14	1.23	0.29
Winter vs summer	8.08*	15.46**	7.49*	14.44**	11.10**	1.26	29.66**
Winter vs fall	0.01	0.59	0.58	1.37	0.03	2.03	1.17
Spring vs summer	22.78**	62.08**	30.24**	32.87**	27.46**	3.30	39.72**
Spring vs fall	0.10	3.36	2.76	2.10	0.37	1.15	1.76
Summer vs fall	17.88**	4.83*	1.41	7.17*	7.52*	2.48	7.12*
All seasons	7.97**	8.20**	3.99*	9.29**	5.95**	2.31	8.69**

Table 15. Estimation of differences in Fecal Streptococci concentrations in water runoff between seasons using one way analysis of variance.

Table 16. Estimation of differences in Fecal Streptococci concentrations in water runoff between basins using the paired t-test.

	. <u> </u>	<u>,</u>					
			Bas	sins			
Basins	101	102	103	105	106	107	108
			t- ⁻	test			<u></u>
101	-	0.34	2.40*	0.23	0.64	1.07	1.58
102	-	-	4.04**	0.25	0,54	1.03	1.85
103	-	-	- .	3.05**	3.79**	1.51	1.08
105	-	-	· _	-	0.84	1.23	1.11
106	-	-	-	-		0.92	2.29*
107	-	-	-	-		-	1.34
108	-	-	_	-		-	-

Streptococci concentrations were also significantly lower at basin 106 than
those at basin 108. No difference was found in FS concentrations between basin
other basin.
107 and any/The usually high FS concentrations at weir 107 may be due to an
exceptionally high FS (28,000/100ml) concentration on day 223 of 1975.

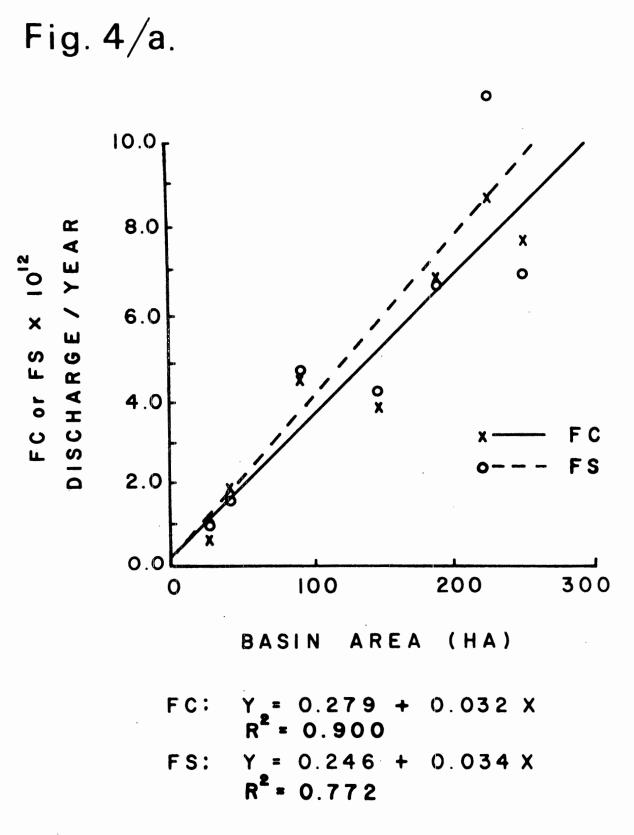
Fecal Streptococci Discharge

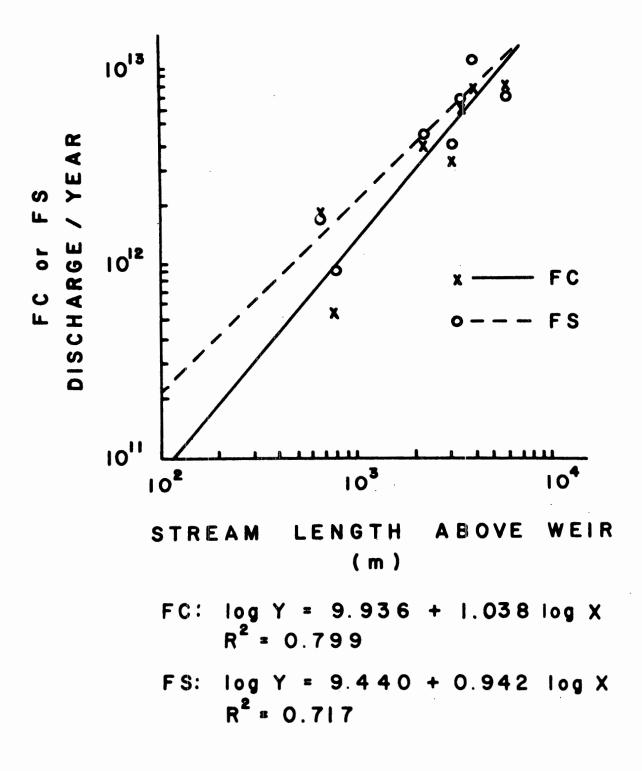
The total yearly FS discharge ranged from 0.9×10^{12} to 11.2×10^{12} FS/year depending on basin (Table 17). The highest FS discharge was estimated from basin 101 and the lowest from basin 107. Water discharge was the highest during the summer shown in Table 2. These high water flow values corresponded closely with the high FS discharge levels from all basins. Thus, the highest FS discharge occurred in the summer and the lowest in the fall and winter (Table 17).

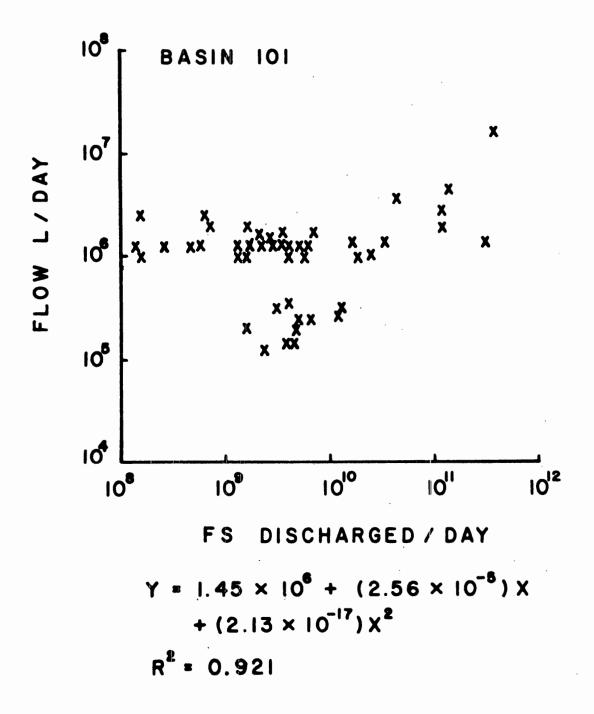
Fecal Streptococci discharge (Table 17 and Fig. 4/a) and FC discharge (Table 8 and Fig. 3/a) depended on the size of basin. The larger basins discharged more bacteria per year than the smaller basins (Fig. 4/a). A least squares regression analysis gave a linear positive relationship: Y (FS x 10^{12} discharged/year = 0.246 + 0.034 X (basin size/ha). The coefficient of variation was R² = 0.772, significant at 95% probability level.

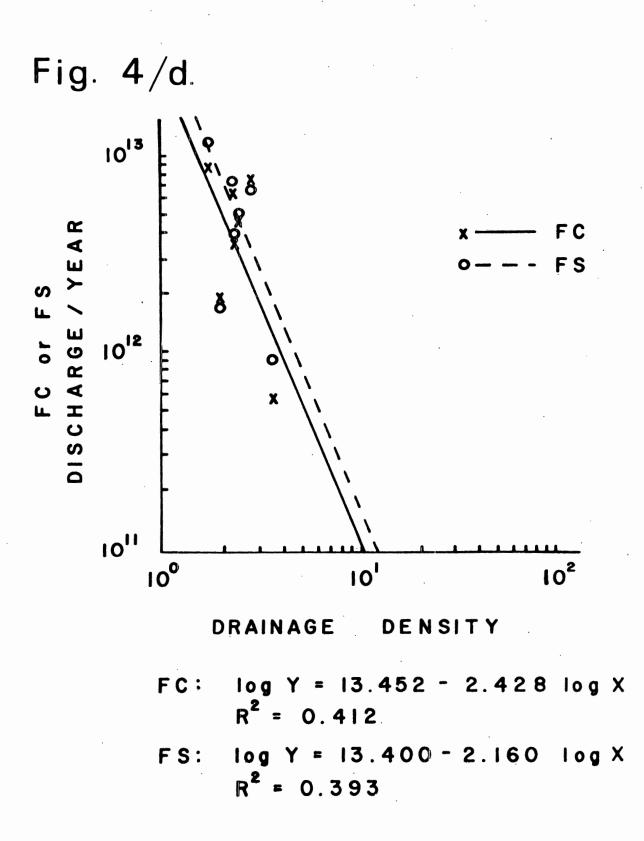
A linear positive relationship existed between FS discharge and stream length (Fig. 4/b). A least squares regression analysis gave the relationship: log Y (FS x 10^{12} discharged/year) = 9.44 + 0.94 log X (stream length/m). The coefficient of determination was R² = 0.717, significant at 95% probability level.

-44-


Months	101	102	103	105	106	107	108		
74-75			FS x 10	10 dischar	ge/month				
December*	51.23	20.22	10.86	0.54	13.54	0.09	2.59		
January*	51.23	20.22	10.86	0.54	13.54	0.09	2.59		
February	46.28	18.26	9.81	0.49	12.23	0.08	2.34		
March	128.10	47.52	23.46	19.98	37.70	9.35	3.44		
April	8.24	0.92	0.90	0.23	5.94	0.77	3.02		
May	27.51	7.49	4.22	3.30	40.66	3.33	20.06		
June	27.77	17.60	95.83	2.45	28.37	3.58	17.40		
July	613.05	317.16	382.97	119.11	235.22	46.28	256.90		
August	37.98	34.20	18.16	4.52	5.81	13.19	16.45		
September	96.58	134.09	91.68	20.56	40.24	5.30	64.17		
October	20.41	25.42	15.59	2.70	11.06	**	14.79		
November	9.98	17.26	19.07	3.56	6.39	-	7.27		
	FS x 10 ¹² discharge/year								
Annua1	11.18	6.60	6.83	1.78	4.51	0.93	4.11		


Table 17. Fecal Streptococci monthly and annual discharge from seven Rhode River basins.


* December and January values estimated from February water discharge values. **Weir inoperable


Fig. 4. Regression analyses of Fecal Streptococci (FS) yearly discharge, basin characteristics and water discharge. Fig. 4/a. Linear relationship between FS discharge and basin area. Slope: 0.034, intercept 0.246, and coefficient of determination 0.772. Fig. 4/b. Linear relationship between FS discharge and stream length. Slope: 0.940, intercept 9.44 and coefficent of variation $R^2 = 0.717$. Fig. 4/c. Parabolic relationship between water flow and FS discharge. Intercept: 1.45 x 10⁶, coefficients a₁ 2.56 x 10⁻⁵; a₂ 2.13 x 10⁻¹⁷; and coefficient of variations $R^2 = 0.921$. Fig. 4/d. Linear relationship between FS discharge and drainage density. Slope: -2.16, intercept 13.40 and coefficient of variations $R^2 = 0.393$. Numbers 101 to 108 on each graph refer to the designated subwatershed basins.

ï

-50-

Drainage density and FS discharge do not appear closely related (Fig. 4/d). A least squares regression analysis gave the following relationship, log Y (FS x 10^{12} discharge/year) = 13.40 - 2.16 log X (drainage density). The coefficient of variation was R^2 = 0.393 and it was not significant at the 95% probability level. The above relationship is very similar that existing between FC discharge/year and drainage density (Fig. 3/d).

A parabolic regression equation was used to estimate the relationship between FS discharge and flow rate (Fig. 4/c). Increased water flow increased FS discharge proportionally at an exponential rate from basin 101. The best fit of the data is expressed by the equation Y (flow 1 x 10^6 /day) = 1.45 x 10^6 + (2.56 x 10^{-5}) x (FS x 10^9 discharged/day) + (2.13 x 10^{-17}) X². The coefficient of determination was R² = 0.921.

The relationship between water flow and FS discharge was also analyzed for all seasons and for the year at the seven basins (Table 18). The coefficients of determination (R^2) are listed for the data: the two variable parabolic regression analysis indicated that 93 to 99% of the variation in FS discharge can be explained with water discharge during summer and 53 to 99% during the other seasons. Yearly R^2 values ranged from 0.63 to 0.95 and most values were significant at the 95% probability level.

Fecal Streptococci discharge per unit watershed area was also estimated. The yearly average FS discharge from the seven basins was 1.21×10^8 /ha day. The yearly average FS discharge values ranged from a high of 1.54×10^8 /ha year at basin 106 to a low of 8.81×10^7 /ha year at basin 108. The seasonal average FS discharge/ha day were as follows: winter 2.57×10^7 FS/ha day; spring 5.50×10^7 FS/ha day; summer 2.6×10^8 FS/ha day; and fall 7.90 x 10^7 FS/ha day respectively.

-51-

at all basins (Table 17). A one way analysis of variance indicated no significan differences in FS discharge between any of the seasons (Table 19). Differences in FS discharge/ha day between basins was estimated using a paired t-test (Table 20). This analysis appeared to indicate significant differences only between FS discharge at basin 106 (highest FS discharge/ha day) and at basin 108 (lowest FS discharge/ha day) and no difference at all other basins.

Table 18. Coefficients of determination for seasonal water discharge (Y)^a against seasonal Fecal Streptococci discharge (X)^b from seven Rhode River basins using two variable parabolic regression equation.

Seasons 1974-75	101	<u>102</u> Coeffici	103	Basins 105 etermina	<u>106</u> tion (R ²	107)	108
Winter	0.99*	0.25	0.41	0.99*	0.78	0.99*	0.79*
Spring	0.53*	0.46	0.70*	0.96*	0.98*	0.46	0.02
Summer	0.99*	0.99*	0.99*	0.99*	0.99*	0.93*	0.99*
Fall	0.49	0.54	0.07	0.34	0.16	0.99*	0.08
Annua1	0.94*	0.63*	0.83*	0.95*	0.95*	0.78*	0.85*
Nc	43	42	41	43	43	34	43

 $a = flow L \times 10^6/day$

 $b = FS \times 10^6$ discharged/day

c = number of weeks sampled during the year

				Basin			
Seasons	101	102	103	105 F - valu	106	107	108
Winter vs spring	0.02	0.01	0.00	0.77	0.71	0.73	0.36
Winter vs summer	0.32	0.69	0.83	0.44	0.41	1.06	0.64
Winter vs fall	0.01	0.33	0.43	0.59	0.10	2.47	0.65
Spring vs summer	0.94	2.22	2.84	0.91	0.84	1.91	1.89
Spring vs fall	0.08	1.00	1.40	0.02	0.20	0.01	1.34
Summer vs fall	1.12	0.51	1.64	0.81	1.05	0.55	0.86
All seasons	0.75	0.97	1.70	0.70	0.74	1.12	1.10

Table 19. Estimation of difference in Fecal Streptococci discharge/ha day between seasons using one way analysis of variance.

Table 20. Estimation of difference in Fecal Streptococci discharge/ha day between basins using the paired t-test.

	Basin							
Basin	101	102	103 t-v a	105	106	107	108	
			L-V0					
101	-	0.68	1.65	0.68	1.32	1.37	1.84	
102	-	-	1.22	0.74	1.02	0.64	1.40	
103	-	-	-	1.38	1.99	0.33	0.16	
105	-	-		-	0.14	1.10	1.44	
106	-	-	-	-	-	1.54	2.20*	
107	-	-	-	-	-	-	0.29	
108	-	-	-	 ·	-	-	-	

•

: .

Fecal Streptococci Discharge - Land Use Relationship

The statistical model was applied to estimate FS discharge values from 3 land uses (Table 21). From pasture the discharge was 15.11×10^{10} FS/ha year, from forest 0.95 x 10^{10} FS/ha year and from cultivated areas 1.67 x 10^{10} FS/ha year. The seasonal FS discharge rates were variable. Pasture had the highest FS discharge ranging from 0.67 to 7.6 FS/season; forest 0.3 to 1.29 x 10^{10} FS/season; and cultivated land 0.02 to 0.71 x 10^{10} FS/ season. The highest FS discharge values occurred at all three land use during the summer and discharge values declined in the following order: winter, spring and fall. Considering the FS discharge values in each land use category, the model indicates that 85% of total FS discharge was derived from pasture, 10% from cultivated and 4% from forested areas.

Seasons	Pasture	Forest FS x 1010 discharged/ha	Cultivated
Winter	3.30	-0.30	-0.42
Spring	3.43	-0.38	0.02
Summer	7.60	1.29	0.71
Fall	0.67	0.48	0.48
Year	15.11	0.95	1.67

Table 21. Predicted yearly and seasonal fecal streptococci discharge from pasture, forest and cultivated areas.

Identification - Confirmation of Indicator Bacteria

1. Total coliforms: coliform flora of water samples selected at random

-54-

were used to estimate <u>Escherichia coli</u> as % of total coliform population (Table 22). It appeared that total coliform population in water runoff consisted of numerous genera, such as <u>E. coli</u>, <u>Enterobacter</u>, <u>Klebsiella</u>, <u>Citrobacter</u> and unidentified organisms. The most numerous isolate was E. coli representing 29 to 74% of the total coliform population.

2. Fecal coliform: Bacterial colonies were also selected from the surface of the membrane filters to confirm the % of <u>E</u>. <u>coli</u> of FC bacterial flora. All randomly selected typical FC colonies were confirmed to be <u>E</u>. <u>coli</u>. Thus, FC is a better parameter assessing water quality than TC.

3. Fecal Streptococci: Confirmation of FS in randomly selected water samples were used to estimate <u>S</u>. <u>faecalis</u> biotypes as % of the fecal streptococci (FS) population (Table 23). It appeared that <u>S</u>. <u>faecalis</u> biotypes represented the largest streptococci population, ranging from 59 to 90% of TS flora. About 34% of TS population could not be identified. <u>Streptococcus bovis</u> and <u>S. equinus</u> represented a very low percent of the streptococci in the samples.

4. Salmonella: Water samples were analysed for the presence of Salmonella in runoff of seven Rhode River basins (see Tables in Appendix). Salmonellalike organisms were high in some samples(2400 MPN/m1) and low in other samples. High levels of Salmonella were estimated during spring and summer and low values in the fall and winter. The samples with large numbers of Salmonella also contained high numbers of FC and FS and occurred at times of high water discharge. However, out of many hundred samples only very few Salmonella-like isolateswere confirmed as true Salmonella. Perhaps the enrichment procedure used and the size of samples were not appropriate for our purpose to detect these bacteria.

-55-

Basin	E. coli	Enterobacter	Bacter Klebsiella	ial Species Citrobacter	Unidentified	E. coli % of TC	No. Colonies tested
101	21	2	4	1	2	70	30
102	7	0	0	0	4	64	11
103	2	2	0	1	2	29	7
105	17	1	1	1	3	74	23
106	10	0	1	0	3	71	14
107	3	1	0	2	4	30	10
108	0	3	0	, 0	3	0	6
All ba	isin 60	9	6	5	21	59	101

Table 22.	Confirmation of bacterial species within the total coliform group	
	in water samples taken between September and November 1975.	

٨

Table 23. Confirmation of bacterial species within the fecal streptococci in water samples taken between October 1975 and August 1976.

Basin	S. faecalis biotypes	% of total	S. bovis or S. equinus	% of total	Other FS	% of total	Total No. Colonies tested
101	18	72	1	4	6	24	25
102	74	63	5	4	38	32	117
103	8	62	2	15	3	23	13
105	84	56	1	1	65	43	150
106	9	90	1	. 10	0	0	10
107	12	86	2	14	0	0	14
108	40	59	4	06	24	35	68
Total	245	62	16	04	136	34	397

5. Total Aerobic Heterotrophic Population (TVC): The yearly mean TVC bacterial population in water runoff ranged from 30.5 x 10^3 TVC/ml to 364.9 x 10^3 TVC/ml (Table 24). The highest TVC concentrations were estimated in the runoff at basin 101 (yearly mean 204.8 x 10^3 TVC/ml) and the lowest concentration at basin 105 (yearly mean 55.2 x 10^3 TVC/ml). The seasonal mean bacterial concentrations in the runoff were as follows: winter 364.9 x 10^3 TVC/ml; spring 123.9 x 10^3 TVC/ml; summer 52.2 x 10^3 TVC/ml; summer 52.2 x 10^3 TVC/ml; and fall 30.5 x 10^3 TVC/ml respectively. The standard deviation to the sample mean was relatively large in most cases.

Survival and Injury of Fecal Streptococcus

1. Survival: the effect of physical parameters of estuarine water on <u>S. faecalis</u> MC-5 survival was determined. All simultaneously collected data was used as follows: log viable cell numbers as dependent variable and time, water temperature, dissolved oxygen (D.O.) and salinity as independent variables. The relationship between the above variables was estimated by regression analysis. It appeared that 60% of the variance in viable cell numbers was explained by the length of time ($R^2 = 0.593$) the cells were exposed to the estuary. This result is similarly reported by Faust et. al. (16) on E. coli MC-6 survival.

The effect of temperature on <u>S</u>. <u>faecalis</u> MC-5 survival was also examined (Fig. 5). During the course of study temperature ranged from 7 to 23 C (Table 25). A linear relationship existed between survival rate of bacteria of and water temperature. The slope/decline in viable cell numbers was calculated for all experiments (Fig. 5/a). The best fit of the data by a least squares regression analysis gave the equation y (slope of decline) =

-57-

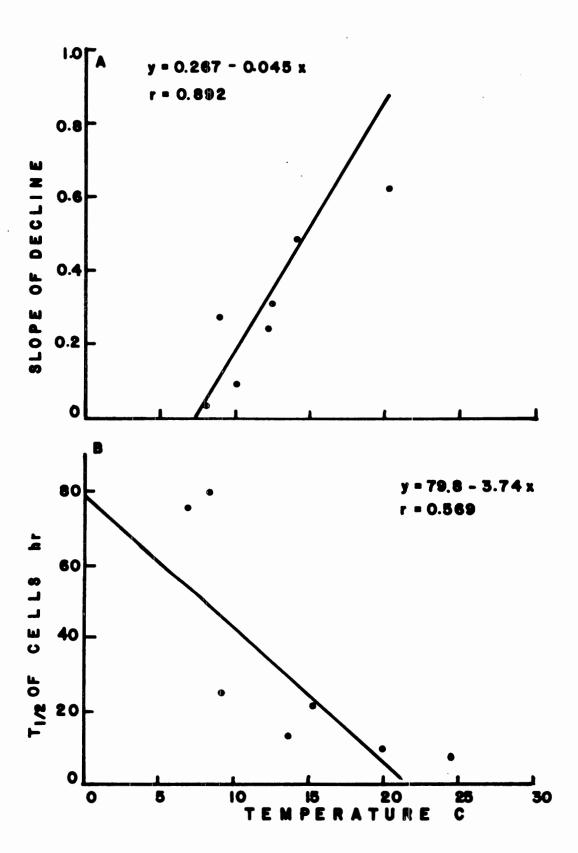

		TVC conce	entrations (cel	ls x 10 ³ /	m])
Basin	Season	Mean	<u><u>+</u> s.d.</u>	n*	Range
101	winter	421	311	7	60 - 830
	spring	417	989	13	30 - 3500
	summer	25	44	10	20 - 150
	fall	12	12	13	3.7 - 46
	year	204	578	43	2.0 - 3500
102	winter	387	443	7	80 - 1100
	spring	94	159	12	3.7 - 500
	summer	48	52	11	5.3 - 160
	fall	51	91	13	4.1 - 320
	year	117	229	43	3.7 - 1100
103	winter	599	776	7	80 - 2200
	spring	66	123	12	8.3 - 450
	summer	51	97	11	3.0 - 340
	fall	40	75	12	3.5 - 262
	year	143	372	42	3.0 - 2200
105	winter	65	85	6	4.7 - 230
	spring	90	164	10	4.7 - 550
	summer	40	45	10	3.7 - 133
	fall	34	73	13	3.6 - 276
	year	55	100	39	3.6 - 550
106	winter	293	618	5	5.7 - 1400
	spring	96	153	13	5.3 - 520
	summer	126	203	13	7.0 - 580
	fall	22	45	11	2.3 - 157
	year	109	251	42	2.3 - 1400
107	winter	350	475	5	4.3 - 1100
	spring	26	23	11	1.3 - 83
	summer	27	23	11	6.3 - 73
	fall	23	29	11	4.5 - 106
	year	68	193	38	1.3 - 1100
108	winter	370	346	6	9.0 - 820
	spring	31	29	11	6.7 - 110
	summer	32	29	13	6.0 - 110
	fall	25	51	11	2.9 - 180
	year	79	176	41	2.9 - 820
asins	winter	364	473	43	4.3 - 2200
	spring	123	417	82	1.3 - 3500
	summer	52	49	79	2.0 - 580
	fall	30	59	84	2.3 - 320
	year	112	313	288	1.3 - 3500

Table 24. Mean total viable aerobic heterotrophic bacterial concentrations in water runoff from seven Rhode River basins

A11

•

Fig. 5. Effect of temperature on the survival of <u>S</u>. <u>faecalis</u> MC-5 cells. Correlation between average viable cell numbers and water temperatures throughout a 7-day period of all experiments was estimated by regression calculations. Fig. 5/a. The slope of decline in viable cell numbers affected by each water temperature was estimated and plotted against the temperatures. A linear least-squares regression calculation gave y =0.267 + 0.045 x and a positive correlation of r = 0.892. Fig. 5/b.t 1/2 at each temperature was estimated and plotted against the temperature. A linear least-squares regression calculation gave y = 79.8 - 3.74 x and an inversely proportional correlation of r = 0.569.

- 60 -

	_							
		<u>p(c)</u>		liter		ation %		ity (%°)
Date of	Min-	Max-	Min-	Max-	Min-	Max-	Min-	Max-
1976	imum	imum	imum	imum	imum	imum	imum	imum
17-23	7.0	10.7	10 5	15 0	05	100	F 0	6.0
Feb.	7.2	10.7	10.5	15.0	95	129	5.2	6.2
1-6 March	8.2	11.5	13.0	15.0	113	141	3.0	4.4
9-15 March	7.0	9.1	10.9	13.5	91	120	3.2	3.9
22.20								
22-28 March	11.0	13.5	10.2	15.0	94	148	3.8	5.0
30 March-								
6 April	11.5	12.0	11.0	13.2	103	127	4.4	4.9
12-18								
April	10.5	20.5	11.0	15.0	101	172	4.4	4.6
20-26 April	16.0	23.0	9.0	11.7	94	142	4.7	6.2
		· · · · · · · · · · · · · · · · · · ·						

Table 25: Physical parameters of the water at designated times of the year.^a

^aData were collected by the Geological Survey's water quality monitor located in the Rhode River at the Smithsonian Institution's pier. Data as presented consist of daily maximum and minimum values summarized by week to give weekly averages and extremes. $0.267 + 0.045 \times (water temperature)$. The correlation coefficient was r = 0.892.

Survival of <u>S</u>. <u>faecalis</u> MC-5 effected by temperature was also expressed as time (hours) needed for 50% reduction of viable cell population(T 1/2)(Fig. 5/b). An inversely proportional relationship existed between the above two parameters. A least squares regression analysis gave the following equation y (T 1/2) = 79.8 - 3.74 x (temperature). The correlation coefficient was r = 0.569. The survival of <u>S</u>. <u>faecalis</u> MC-5 at various temperatures was: at 5 C,T 1/2=60 hr; at 10 C,T 1/2=40 hr; and at 20,C T 1/2=6 hr, respectively. The survival of <u>S</u>. <u>faecalis</u> MC-5 at 10 C multiple for two for the survival of for two for two for the survival of for the survival for for two for the fort for two for the fort for two for two for two for two for the fort for two for two

The physical parameters of the estuarine environment varied during this study (Table 25). The temperature ranged from 7 to 23 C, the D.O. ranged from 9 to 15 mg/L, and the salinity ranged from 3.0 to 6.2%. These values are considered representative of the water quality of the estuary during the spring. Although relatively small changes were observed in D.O., temperature and salinity levels in the water, their effects were different on <u>S</u>. <u>faecalis</u> MC-5 survival when these parameters were examined individually (Table 26). It appears that <u>S</u>. <u>faecalis</u> MC-5 survival is effected most by temperature (r = 0.750), next by salinity (r = 0.537), and least by D.O. (r = 0.425).

The data was also analysed by multiple linear regression analysis to establish linear relations among more than two independent variables, temperature, salinity, and DO (Table 27). Regressions were performed and multiple coefficients of determination (R^2) estimated. It appeared that 56% of the variance in viable cell numbers was explained by water tempera-

-62-

Variables Independent Dependent Salinity Dissolved Temperature Viable cell numbers oxygen С . %0 log cells/ml mg/l Correlation 0.750 0.537 Coefficient 0.425 Table 27: Results of the multiple correlation analysis of four variables of S. faecalis MC-5 survival after 3 days in the Rhode River. Steps in regression Determination 1 2 3 Variable Temperature Temperature Temperature + + D.O. D.O. Salinity Coefficients of 0.562 0.562 0.753 determination

Table 26: Results of the two-variable linear regression analysis of <u>S</u>. <u>faecalis</u> MC-5 survival after 3 days in the Rhode River. ture; the combined effect of temperature and D.O. remained the same $(R^2 = 0.562)$; and the addition of all 3 parameters, salinity, temperature and D.O., explained 75% of variation in viable cell numbers. Thus, survival of <u>S</u>. <u>faecalis</u> MC-5 was affected in order of decreasing importance by temperature, salinity, and D.O. Montmorillonite and illite had no effects on the survival of <u>S</u>. <u>faecalis</u> MC-5 exposed to the estuarine environment.

2. Cell injury and repair: The effect of injury during washing <u>S</u>. <u>faecalis</u> MC-5 cells with standard and gelatin phosphate buffers was evaluated (Table 28). It appeared that gelatin buffer washed cells survival was high and few percent of the cell population died during the duration of the experiment, 48 hr <u>in situ</u> exposure to the estuarine environment. The survival rate of washed cells with standard buffer was somewhat reduced, with a larger percent of the population dying. Cell injury was about the same with both buffers. Cell injury increased, however, proportionally with <u>in situ</u> exposure time.

The survival and injury characteristics of standard PO₄ buffer washed cells of <u>S</u>. <u>faecalis</u> MC-5 in membrane filter chambers over 7 days exposure period in estuarine environment was next tested (Table 29). The ability of these cells to survive in the estuarine water was relatively high. Cell injury remained low, ranging from 3 to 19% of the original population after 6 days in the estuary. The above data indicated that injury of <u>S</u>. <u>faecalis</u> MC-5 populations was probably a non-lethal type and cell repair could occur.

In order to evaluate that these injured <u>S</u>. <u>faecalis</u> MC-5 cells could repair cell injury, cells were exposed to 0 to 48 hr in the estuarine environment and cell suspensions were plated on selective (ADA) and non-selective

-64-

Exposure time	Stand		ffer Gelat	in PO4	% Dea Buff		% In Buff	jury er	% Surv Buff	
(hr)	TSA	ADĂ	TSA x 10 ⁸ /m1	ADÁ	Standard PO ₄	Gelatin PO ₄	Standard POq	Gelatin PO4	Standard PO ₄	Gelatin PO4
0	1.0	1.0	1.1	1.1	0	0	0	0	100	100
6	1.2	1.6	1.2	1.3	80	9	33	8	20	91
8	1.8	1.4	1.1	1.4	20	0	22	27	80	100
24	1.5	1.2	1.1	1.5	50	0	20	36	50	100
48	1.2	1.1	1.0	1.8	20	9	8	80	80	91

Table 28. Effect of standard phosphate and gelatin phosphate buffer solutions upon death and injury to <u>S</u>. <u>faecalis</u> MC-5 cells suspension in membrane filter chambers suspended in estuarine water.

(TSY) media (Fig. 6). High correlations were found between log cell numbers and time of 0 hr exposed cells in the water on both ADA and TSY media. Least squares regression analysis gave the following equations: y (log cells/ml) = $7.53 + 0.006 \times (\text{time}, \text{hr})$ and a corelation coefficient of r = 0.948 on ADA medium; y (log cells/ml) = $7.54 + 0.006 \times (\text{time}, \text{hr})$ and r = 0.931 on TSY medium; similarly cells exposed to the estuary for 48 hr the equations were: y (log cells/ml) = $7.33 + 0.006 \times (\text{time}, \text{hr})$ and r = 0.902 on TSY medium; and y (log cells/ml) = $7.37 + 0.006 \times (\text{time}, \text{hr})$ and r = 0.953 on ADA medium respectively. The slopes were identical in the above experiments, indicating the same growth rates of <u>S</u>. <u>faecalis</u> MC-5 on both selective and non-selective media. Thus, relatively equal detection of viable cells for control (0 hr) and 48 hr exposed <u>in situ</u> cell populations indicated that the environmental stress of the estuary appears to be non-lethal type of injury.

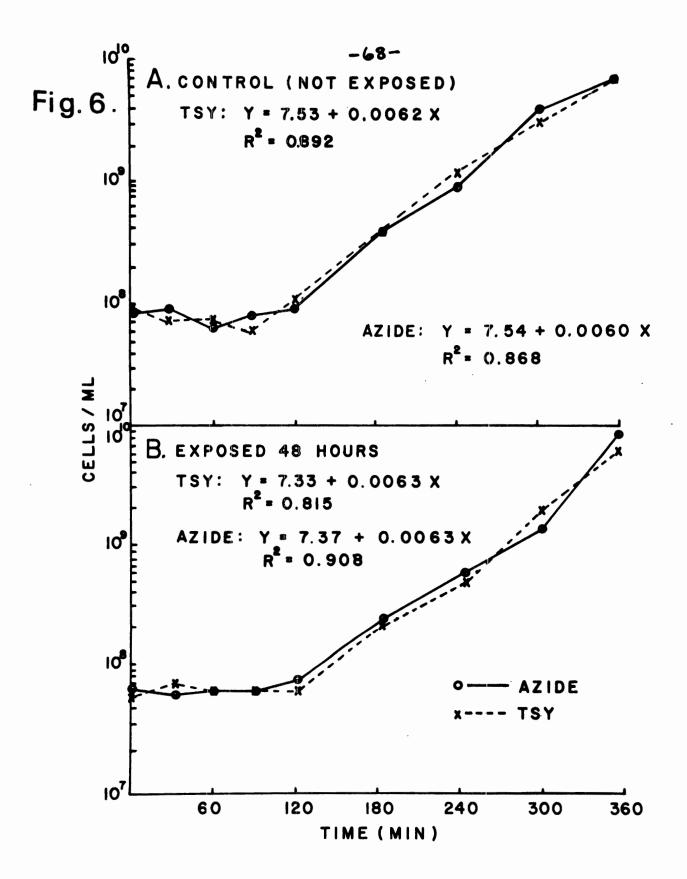

Exposure	Cells x 10 ⁸ /ml		% Deeth	% Suminal	% Injury	
Time (days)	ADA	TSA	% Death	% Survival	∥ mjury	
0	2.3	2.3	0	100	0	
1	1.33	1.27	45	55	5	
2	1.70	1.43	38	62	19	
3	1.47	1.43	38	62	3	
6	1.30	1.53	38	67	15	
7	1.23	1.63	29	71	75	

Table 29. The survival and injury of standard phosphate washed <u>S</u>. <u>faecalis</u> MC-5 cells in membrane filter chambers over 7 days exposure period in the estuarine water.

Fig. 6. Evaluation of the type of cell injury of <u>S</u>. <u>faecalis</u> MC-5 exposed to estuarine environment for 48 hrs.

.

.

DISCUSSION

It is difficult to rank all the factors contributing to FC discharge from a rural watershed. We have selected a few which appeared the most important. One has to keep in mind that this study was completed in an area where basin size varied between 28 to 254 ha, the stream length varied between 0.7 - 6.7 km, the slopes average 5%, land use was complex and the animal population was 0.53 unit/ha. Therefore, the conclusions may have the limitations imposed by the above factors.

<u>Water flow</u>: Water flow is an important variable affecting in discharging of fecal organisms. This fact has been shown by several workers (12, 14, 27, 29, 36). Our present data indicate that the relationship between FC discharge and water flow may be complicated. FC discharge was little affected when water flow was between 5 to 10,000 l ha-day⁻¹. FC discharge increased exponentially when water discharge increased over the value of 10,000 l/ha-day. This relationship appears to be similar to that reported by other investigators for total viable bacterial discharge (12) and for sediment discharge (6).

There are other factors which may be important in FC discharge. The number of bacteria in or on the soil and vegetation also could influence FC discharge (13). This is especially important when various animal densities and the deposition of bacteria produced by them on the soil and vegetation is considered.

One of the factors influencing bacterial pollution the most is the rate of water flow. This can be estimated by periodical sampling. or by more sophisticated automated integrated sampling. To calculate area yields, the determination of total water discharge is essential. We therefore, determined how closely one can estimate waterflow from spot samples taken weekly from

-69-

the basins. We compared this estimation with the result of continuous flow measurements. This comparison is important because for microbial analysis one must use spot sampling and the knowledge of water flow is essential in calculating area yields.

The weekly spot sampling method of estimating bacterial discharge has the disadvantage that sampling times are random with respect to rainfall patterns. Samples taken during the peak of a storm event may grossly over estimate the water flow and bacterial discharge for that week, while samples taken at base flow which miss one or more periods of rain may underestimate the true bacterial discharge levels. The bacterial discharge data from the seven basins are considered as minimum values, because samples were taken mostly during base flow conditions. Although, weekly flow values were different depending upon the use of either spot sampling or continuous flow values, the yearly flow estimates by the two methods were in very close agreement leading us to believe that bacterial discharge levels for each basin are relatively close estimates of pollution.

<u>Seasons</u>: The season of the year is a determining factor in the level of bacterial pollution. This is evident from this study as well as from previous studies (Correll et. al. 1976). The seasonal fecal discharge levels can be different from one year to the next from the same watershed (14, 15). The FC discharge was the highest during spring and summer of 1974-75 water year, whereas it was the highest during spring and winter during the 1973-74 water year. The difference observed between the two years is probably due to the rainfall pattern, since the 1974-75 year was wet and the 1973-74 year had an extremely dry summer. The yearly FS discharge appeared to be at the same magnitude as yearly FC discharge. The FS discharge was the highest in the summer and the lowest in the fall and winter which is similar to FC

-70-

discharge pattern.

<u>Basin characteristics</u>: Bacterial discharge increased proportionately to basin size and stream length. In our opinion the relationship between basin characteristics and bacterial discharge is only for general use. This relationship merely points to the fact that FC and FS discharge is strongly influenced by the flow of water which in turn is determined by basin characteristics. Therefore, it is not surprising that FC and FS discharge is related to basin characteristics. Estimations such as FC discharge/stream length-year or FC discharge/year varied much more between basins than FC discharge/ha-year and are considered less useful. While discharge expressed on the ha stream length and basin size all had statistically significant relationships with the total FC and FS discharge, the values expressed on the basis of drainage density were not significant.

We have been concerned with the fact that pastures may contribute considerably to FC discharge. We estimated (14, 16) that 1-6% of the FC bacteria produced by domesticated livestock grazing the land are washed from the watersheds through streams that have lengths up to 6.7 km. This further strengthens the importance of the contribution of pastures to the FC discharge from a given watershed.

Land use: A statistical model (8) appears to be useful in estimating the contribution of various land use types to FC and FS discharge. The alternative to this method is to estimate bacterial discharge from a single land use basin. Such basins are difficult to find in a complex land use system, as most stream banks are wooded, while cultivated areas are usually located further from the stream channel. We are in the process of determining the accuracy of the use of a statistical model for FC and FS discharge by determining the contribution of a single land use i.e. cultivated land, to the total bacterial discharge

-71-

by direct sampling. Until this work is completed we can only use relative comparisons. However, the model estimates that 68% of the total FC discharge and 85% of total FS discharge, were from pasture, which occupied only 22% of the total watershed area. The contribution of cultivated and forested areas to bacterial pollution was much smaller in magnitude, although represented a much larger proportion of the land. We consider our calculations realistic, although we need to compare indicator bacterial discharge values from both kind of basins, those with complex and those with single land use.

<u>Survival</u>: Knowledge on the survival of <u>S</u>. <u>faecalis</u> in estuaries is essential in determining the degree of bacterial dispersal and duration of their presence in the water. This information is needed in assessing the reliability of current water quality monitoring procedures. Understanding the survival characteristics of <u>S</u>. <u>faecalis</u> is a way to determine the seriousness of fecal pollution from rural sources. In this study, we have shown that <u>S</u>. <u>faecalis</u> enter the Rhode River estuary in large numbers and contribute significantly to the fecal pollution of the estuary.

Few studies have examined survival characteristics of <u>S</u>. <u>faecalis</u> within an estuarine system. Existing survival studies were performed in other environments. In soils (37) and in fresh water <u>S</u>. <u>faecalis</u> has been found to persist longer at 10 C than 20 C temperatures (3, 28), survived 3-5 times longer in the subartic than in the temperate zones (22), and exceeded the die-off rate of fecal coliforms (32, 33). The survival of <u>S</u>. <u>faecalis</u> also parallels the survival of enteric viruses better than other indicator organisms. Therefore, it may also be used as an estimate of viral pollution (9). In this work we have overcome some of the shortcomings of previous studies. We chose the estuarine environment to assess concomitantly the effect of physical parameters on S. faecalis MC-5 survival over an extended period of time. We

-72-

analyzed the collected data statistically in an attempt to evaluate the combined effects of time, water temperature, D.O. and salinity on <u>S</u>. <u>faecalis</u> MC-5 survival. We used the convenience of dialysis chambers (28) that allowed an <u>in situ</u> examination of the survival of <u>S</u>. <u>faecalis</u> MC-5 of fecal origin isolated from the study site.

The survival of <u>S</u>. <u>faecalis</u> MC-5 in the natural environment of the Rhode River is affected by several factors; they are, in order of importance: the time the organisms are exposed to the water; seasonal variation of 5 to 30 C in water temperature; salinity; and D.O. It appeared that survival characteristics are in general similar for both <u>S</u>. <u>faecalis</u> MC-5 and <u>E</u>. <u>coli</u> MC-6 (14) in the estuary. With the exception that die-off rate(T 1/2)of <u>S</u>. <u>faecalis</u> MC-5 effected by temperature was twice as fast, than estimated for <u>E</u>. <u>coli</u> MC-6 (14). Thus, water temperature appears to have distinct but predictable effect on the survival of fecal bacteria, although it is recommended to be examined separately for each fecal bacterial species.

Sedimentation and flocculation may play an important role in the removal of bacteria from the water column and attachment of bacteria to particulates can aid in their preservation. Montmorillonite addition extended the survival of \underline{E} . <u>coli</u> MC-6 in the Rhode River estuary. In contrast however, this clay had no protection on the survival of \underline{S} . <u>faecalis</u> MC-5. It is interesting to speculate on the possibility that the prolonged <u>in situ</u> survival of fecal coliform but not fecal streptococci can indicate that fecal coliforms are more serious pollutants in the estuarine environment than those of fecal streptococci.

<u>Cell injury and repair</u>: A large proportion of cell populations exposed to an aquatic environment is injured (4). These injured cells are an integral part of the total viable cell population. In order to accurately evaluate

-73-

the proportion of damaged cells, one must allow cells to recover before enumeration. Cells must be allowed to repair injury. In the literature, Bissonnette et. al. (4) demonstrated that gelatin phosphate buffer and nonselective media allow cells from a mountain stream to recover more easily. No such relationship was found in this study. Both repair and injury experiments showed that enumeration of cells prepared with standard phosphate buffer and selective media were the same as those of cells prepared with gelatin phosphate buffer and non-selective media. Neither enriched media nor gelatin phosphate buffer had any effect on <u>S</u>. <u>faecalis</u> populations exposed to the estuarine environment. This is probably due to the higher nutrient concentrations present in the near coastal aquatic environment than in the dilute mountain streams (4).

From a practical viewpoint, this study relates to the use of water temperature as an important predictor of fecal streptococciisurvival in an estuary.

ACKNOWLEDGEMENTS

We would like to thank Gary Chirlin for estimating loading values. Thanks are due to Michael Passo and R. William Schaffner for their valuable technical assistance. This research was supported, in part, by a grant from the program for Research Applied to National Needs of the National Science Foundation and the Smithsonian Institution's Environmental Science Program.

LITERATURE CITED

- Standard Methods for the Examination of Water and Wastewater. (1971)
 13th edition. p. 874. American Public Health Association, Inc. New York, N. Y.
 - <u>Recommended Procedures for the Examination of Sea Water and Shellfish</u>. (1970) 4th edition. p. 35. American Public Health Association, Inc. New York, N. Y.
 - 3. Ballantine, R. K. and F. W. Kittrell. (1968) Observations of fecal coliforms in several recent stream pollution studies. p. 80-126. <u>In</u> Proc. of Symp. on "Fecal coliform bacteria in water and wastewater." Bureau of Sanitary Engineering, California State Department of Public Health, Los Angeles, California.
 - Bissonnette, G. K., J. J. Jezeski, G. A. McFeters, and D. G. Stuart.
 1975. Influence of environmental stress on enumeration of indicator bacteria from natural water. Applied Microbiology. 29: 186-194.
 - Blair, J. E., E. H. Lennette, and J. P. Truant. 1973. <u>Manual of</u> <u>Clinical Microbiology</u>. Williams and Wilkens Co., Baltimore, Md. p. 151-174.
 - Bormann, F. H., E. Likens, and J. S. Eaton. (1969) Biotic regulation of particulate and solution losses from a forest ecosystem. Bioscience 19: 600-610.
 - Brezenski, F. T. and R. Russomanno. (1969) Detection and use of <u>Salmonellae</u> in studying polluted tidal estuaries. J. Water Pollut. Cont. Fed. 41: 725-737.
 - 8. Chirlin, Gary and D. L. Correll. (1977) A statistical approach to the calculation of area yield coefficients based on land use. <u>In</u> Water-

shed Research in Eastern Watershed Program. Chesapeake Bay Center for Environmental Studies, Smithsonian Institution, Edgewater, Md. Feb. 28 - March 3, 1977. Smithsonian Institution publication.

- Cohen, J., and H. I. Shuval. 1973. Coliforms, fecal coliforms, and fecal streptococci as indicators of water pollution. Water, Air, and Soil Pollution. 2: 85-95.
- Correll, D. L. (1977) An Overview of the Rhode River Watershed Program. <u>In</u> Watershed Research in Eastern North America. Chesapeake Bay Center for Environmental Studies, Smithsonian Institution, Edgewater, Md. Feb. 28 - March 3, 1977. Smithsonian Institution publication.
- 11. _____, J. W. Pierce and M. A. Faust. 1976. A quantitative study of the nutrient, sediment and coliform bacterial constituents of water runoff from the Rhode River watershed. Proceedings of a Southeastern Regional Conference on Non-point Sources of Water Pollution. Virginia Polytechnic Institute and State University, Blacksburg, Virginia; May, 1975. p. 131-143.
- Evans, M. R. and J. D. Owens. (1973) Soil bacteria in land drainage water. Water Res. <u>7</u>: 1295-1300.
- Evans, M. R. and J. D. Owens. (1972) Factors affecting the concentration of fecal bacteria in land drainage water. J. Gen. Microbiol. <u>71</u>: 477-485.
- Faust, M. A. (1976/a) Coliform bacteria from diffuse sources as a factor in estuarine pollution. Water Research <u>10</u>: 619-27.
- 15. Faust, M. A. (1976/b) Non-point Source Studies on Chesapeake Bay: I. Bacterial Contamination from the Rhode River Watershed, concentrations and survival studies in the estuary. Chesapeake Research Consortium Incorporated Publication No. 53. p. 69.

-77-

- 16. Faust, M. A., A. E. Aotaky, and M. T. Hargadon. (1975) Effect of physical parameters on the <u>in situ</u> survival of <u>Escherichia coli</u> MC-6 in an estuarine environment. Applied Microbiol. <u>30</u>: 800-806.
- 17. Gameson, A. L. H., D. Munro, and E. B. Pike. (1970) Effects of certain parameters on bacterial pollution at a coastal site. p. 34-54. Symp. on Water Pollution Control in Coastal Areas. Bouremouth, England.
- Geldreich, E. E. (1970) Applying bacteriological parameters to recreational water quality. J. Am. Water Works Assoc. 62: 113-120.
- 19. Geldreich, E. E. (1967) Origins of microbial pollution in streams. <u>In</u> Transmission of viruses by the water route. Berg, G. ed. p. 355. John Wiley and Sons, New York, N. Y.
- 20. Geldreich, E. E., and B. A. Kenner. 1969. Concepts of fecal streptococci in stream pollution. Water Pollut. Cont. Fed. 41: R336-352.
- 21. Geldreich, E. E., L. C. Best, B. A. Kenner, and D. J. van Donsel. (1968) The bacteriological aspects of stormwater pollution. J. Water Pollut. Cont. Fed. 40: 1861-1872.
- 22. Gordon, R. C. 1972. Winter survival of fecal indicator bacteria in a subarctic Alaskan river. EPA-R2-72-013.
- Hendricks, C. W. (1971) Enteric bacterial metabolism of stream sediment eluates. Can. J. Microbiol. 17: 551-556.
- 24. Hendricks, C. W. and S. M. Morrison. (1967) Multiplication and growth of selected enteric bacteria in mountain stream water. Water Res. <u>1</u>: 567-576.
- 25. Ketchum, B. H., J. C. Ayres, and R. F. Vaccaro. (1952) Process contributing to the decrease of coliform bacteria in tidal estuary. Ecology <u>33</u>: 247-258.

- 26. Kirchner, W. B. (1975) An examination of the relationship between drainage basin morphology and the export of phosphorus. Limnol. Oceanog. <u>20</u>: 267-70.
- 27. Kunkle, S. H. (1970) Concentrations and cycles of bacterial indicators in farm surface runoff. p. 49-60. <u>In</u> Relationship of Agriculture to Soil and Water Pollution. Presented at the conference on Agricultural Waste Management. Cornell University, Ithaca, N. Y.
- 28. McFeters, G. A., and D. G. Stuart. (1972) Survival of coliform bacteria in natural waters: field and laboratory studies with membrane-filter chambers. Appl. Microbiol. 24: 805-811.
- Morrison, S. M. and J. F. Fair. (1966) Influence of environment on stream microbial dynamics. p. 21. Colorado State University Hydrology Papers No. 13. Fort Collins, Colorado.
- Ongley, E. D. 1973. Sediment discharge from Canadian basins into Lake
 Ontario. Can. J. Earth Sciences <u>10</u>: 146-56.
- Rheinheimer, G. (1968) Results and problems of microbiological estuarine investigation. Mitt. Int. Verein. Theor. Angew Limnol. <u>14</u>: 155-63.
- 32. Smith, R. J., R. M. Twedt, and L. K. Flanigan. (1973) Relationship of indicator and pathogenic bacteria in stream water. J. Water Pollut. Cont. Fed. 45: 1737-1745.
- 33. Smith, R. J., and R. M. Twedt. (1971) Natural relationship of indicator and pathogenic bacteria in stream waters. J. Water Pollut. Cont. Fed. 43: 2200-2209.
- Strobel, G. A. (1968) Coliform fecal coliform bacteria in tidal waters. J. Sanit. Eng. Div. Am. Soc. Civil Eng. <u>94</u>: 641-656.
- 35. Weibel, S. R., R. J. Anderson and R. L. Woodware. (1964) Urban runoff as a factor in stream pollution. J. Water Pollut. Cont. Fed. <u>36</u>: 914-924.

- 36. Weidner, R. B., A. G. Christenson, S. R. Weibel and G. G. Roebeck. (1969) Rural runoff as a factor in stream pollution. J. Water Pollut. Cont. Fed. 41: 377-384.
- 37. Van Donsel, D. J., E. E. Geldreich and N. A. Clarke. (1967) Seasonal variations in survival of indicator bacteria in soil and their contribution to storm water pollution. Appl. Microbiol. <u>15</u>: 1362-1370.

8

Day of 1975	Flow Lx10 ⁶ /day	Flow Lx10 ³ / day/ha	FCx106 discharged/ day	FCx10 ⁶ discharged/ day/ha	FCx10 ⁶ discharged/ day/animal
006	0.52	2.17	5,720.0	23.89	17.55
013	3.34	13.95	367.4	1.53	1.13
027	1.97	8.23	492.5	2.06	1.51
034	1.44	6.02	6,624.0	27.67	20.32
041	1.78	7.44	765.4	3.20	2.35
049	1.88	7.85	4,512.0	18.85	13.84
055	2.38	9.94	666.4	2.78	2.04
062	1.29	5.39	554.7	2.32	1.70
069	1.14	4.76	5,244.0	21.90	16.09
076	6.65	27.78	159,600.0	666.67	489.57
083	5.33	22.26	127,920.0	534.34	329.39
090	4.19	17.50	963.7	4.03	2.96
097	2.06	8.60	9,476.0	39.58	29.07
104	1.61	6.73	692.3	2.89	2.12
111	1.61	6.73	627.9	2.62	1.93
118	2.27	9.48	10,442.0	43.62	32.03
125	4.35	18.17	47,850.0	199.87	146.78
132	1.97	8.23	295.5	1.23	0.91
139	1.97	8.23	78.8	0.33	0.24
147	1.29	5.39	296.7	1.24 0.47	0.91 0.35
153	1.61	6.73	112.7 1,140.0	4.76	3.50
160	0.57 0.48	2.38 2.01	11,520.0	48.12	35.34
167 174	0.48	1.25	7,200.0	30.08	22.09
181	0.27	1.13	6,480.0	27.07	19.88
188	0.17	0.71	1,870.0	7.81	5.74
195	26.82	112.03	643,680.0	2,688.72	1,974.48
202	5.69	23.77	136,560.0	570.43	418.90
209	0.61	2.55	1,830.0	7.64	5.61
216	0.27	1.13	810.0	3.38	2.48
223	0.44	1.84	1,100.0	4.59	3.37
230	1.97	8.23	6,895.0	28.80	21.15
237	0.44	1.84	528.0	2.21	1.62
244	3.61	15.08	34,656.0	144.76	106.31
251	1.07	4.47	2,033.0	8.49	6.24
258	0.37	1.55	666.0	2.78	2.04
265	0.57	2.38	1,425.0	5.95	4.37
272 280	3.47	14.49	4,164.0	17.39	12.77
280	1.60 2.27	6.68 9.48	640.0 5,675.0	2.67 23.71	1.96 17.41
293	3.08	12.87	3,696.0	15.44	11.34
301	2.17	9.06	325.5	1.36	1.00
307	1.60	6.68	160.0	0.67	0.49
314	1.69	7.06	7,436.0	31.06	22.81
321	2.07	8.65	-	-	
328	1.60	6.68	800.0	3.34	2.45
335	2.07	8.65	1,242.0	5.19	3.81
342	1.44	6.02	1,368.0	5.71	4.20
349	1.52	6.35	608.0	2.54	1.87
356	1.14	4.76	114.0	0.48	0.35
363	1.87	7.81	56.1	0.23	0.17

Table 1: Fecal coliform bacteria in surface water samples affected by water runoff and livestock density at watershed 101.

Day of 1975	Flow Lx106/day	Flow Lx10 ³ / day/ha	FCx106 diścharged/ day	FCx106 discharged/ day/ha	FCx106 discharged/ day/animal
006	0.44	2.44	189.2	1.05	4.85
013	2.71	15.05	12,466.0	69.22	319.64
027	1.78	9.88	4,272.0	23.72	109.54
034	1.21	6.72	2,904.0	16.12	74.46
041	1.78	9.88	8,188.0	45.46	209.95
049	1.69	9.38	659.1	3.66	16.90
055	2.17	12.05	2,018.1	11.21	51.75
062	1.07	5.94	160.5	0.89	4.12
069	0.09	0.50	38.7	0.21	0.99
076	6.64	36.87	15,936.0	88.48	408.62
083	5.69	31.59	136,560.0	758.25	3,501.54
090	2.38	13.21	2,213.4	12.29	56.75
097	1.52	8.44	653.6	3.63	16.76
104	1.14	6.33	5,244.0	29.12	134.46
111	1.14	6.33	5,244.0	29.12	134.46
118	1.97	10.94	9,062.0	50.32	232.36
125 132 139 147 153 160	3.90 1.69 1.78 0.88 0.88 0.88 0.33	21.65 9.38 9.88 4.89 4.89 1.83	9,360.0 152.1 53.4 26.4 26.4 7,920.0	51.97 0.84 0.30 0.15 0.15 43.98	240.00 3.90 1.37 0.68 0.68 203.08
167 174 181 188 195	0.27 0.15 0.15 0 10.59	1.50 0.83 0.83 0 58.80	6,480.0 1,650.0 3,600.0 254,160.0	35.98 9.16 19.99 1,411.22	166.15 42.31 92.31 6,516.92
202	6.26	34.76	150,240.0	834.20	3,852.31
209	0.44	2.44	440.0	2.44	11.28
216	0.21	1.17	315.0	1.75	8.08
223	0.19	1.05	760.0	4.22	19.49
230	1.21	6.72	3,872.0	21.50	99.28
237	0.24	1.33	456.0	2.53	11.69
244 251 258 265 272 280	2.83 0.71 0.27 0.40 2.71 1.07	15.71 3.94 1.50 2.22 15.05 5.94	62,260.0 1,846.0 864.0 1,120.0 5,691.0 535.0 2,016.0	345.70 10.25 4.80 6.22 31.60 2.97 11.19	1,596.41 47.33 22.15 28.72 145.92 13.72 51.69
287 293 301 307 314 321 328	1.44 2.27 2.17 1.14 1.21 1.69 1.63	8.00 12.60 12.05 6.33 6.72 9.38 9.05	4,994.0 2,604.0 627.0 3,751.0 4,394.0 1,059.5	27.73 14.46 3.48 20.83 24.40 5.88	128.05 66.77 16.08 96.18 112.67 27.17
335	1.60	8.88	4,640.0	25.76	118.97
342	1.14	6.33	171.0	0.95	4.38
349	1.14	6.33	228.0	1.27	5.85
356	0.82	4.55	1,558.0	8.65	39.95
363	1.52	8.44	608.0	3.38	15.59

Table 2:	Fecal	colifor	n ba	cteria	in	surface	wate	er samples	affected	by
	water	runoff	and	livesto	ock	density	at w	atershed	102.	•

Day of 1975	Flow Lx106/day	Flow Lx103/ day/ha	FCx106 discharged/ day	FCx10 ⁶ discharged/ day/ha	FCx106 discharged/ day/anima1
006	0.37	1.45	777.0	3.05	9.25
013	3.47	13.64	-	-	
027	1.52	5.97	653.6	2.57	7.77
034	1.14	4.48	490.2	1.93	5.84
041	1.87	7.35	804.1	3.16 33.81	9.57 102.40
049	1.87	7.35 8.92	8,602.0 976.1	3.84	11.62
055 062	2.27 1.21	4.76	1,125.3	4.42	13.40
069	1.07	4.21	460.1	1.81	5.48
076	6.45	25.35	15,480.0	60.85	184.29
083	6.85	26.93	164,400.0	646.23	1,957.14
090	3.08	12.11	708.4	2.78	8.43
097	2.38	9.36	1,023.4	4.02	12.18
104	1.78	7.00	694.2	2.73	8.26
111	1.69	6.64	388.7	1.53	4.63
118	2.83	11.12	650.9	2.56	7.75
125	4.66	18.32	11,184.0	43.96 0.88	133.14 2.67
132	2.49	9.79 8.92	224.1 90.8	0.36	1.08
139 147	2.27 1.36	5.35	40.8	0.16	0.49
153	1.36	5.35	54.4	0.21	0.65
160	0.57	2.24	2,622.0	10.31	31.21
167	5.69	22.37	136,560.0	536.79	1,625.71
174	0.24	0.94	1,104.0	4.34	13.14
181	0.24	0.94	5,760.0	22.64	68.57
188	0	0	-	-	-
195	17.06	67.06	409,440.0	1,609.43	4,874.29
202	3.34	13.13	80,160.0	315.09 2.91	954.29 8.82
209 216	0.57 0.15	2.24 0.58	741.0 150.0	0.59	1.79
223	0.18	0.70	270.0	1.06	3.21
230	1.97	7.74	2,561.0	10.07	30.49
237	-	-	-	_ ·	-
244	2.17	8.53	54,250.0	213.25	645.83
251	0.61	2.40	793.0	3.12	9.44
258	0.11	0.43	308.0	1.21	3.67
265	0.40	1.57	400.0	1.57 30.17	4.76 91.38
272	4.04	15.88 5.66	7,676.0 1,224.0	4.81	14.57
280 287	1.44 2.07	8.14	1,035.0	4.07	12.32
293	2.83	11.12	3,962.0	15.57	47.17
301	1.78	7.00	801.0	3.15	9.54
307	1.69	6.64	338.0	1.33	4.02
314	2.49	9.79	2,739.0	10.77	32.61
322	2.17	8.53	1,519.0	5.97	18.08
328	1.87	7.35	467.5	1.84	5.57
335	2.17	8.53	2,061.5	8.10	24.54
342	1.78	7.00	2,314.0	9.10	27.55 4.24
349 256	1.78	7.00 5.35	356.0 1,496.0	1.40 5.88	17.81
356 363	1.36 2.07	5.35 8.14	310.5	1.22	3.70
303	2.0/	0.14	510.5	1.444	5.70

Table 3:	Fecal coliform bacteria in surface water samples affected by water	
	runoff and livestock density at watershed 103.	

ŀ

Day of 1975	[,] Flow Lx10 ⁶ /day	'Flow Lx103/ day/ha	FCx10 ⁶ discharged/ day	FCx106 discharged/ day/ha	FCx10 ⁶ discharged day/anima1
006	0.06	1.60	276.0	7.37	8.90
013	1.87	49.96	3,927.0	104.92	126.68
027	0.33	8.82	49.5	1.32	1.60
034	0.21	5.61	315.0	8.42	10.16
041	0.30	8.01	279.0	7.45	9.00
049	0.33	8.82	792.0	21.16	25.55
055	0.37	9.89	159.1	4.25	5.13
062	0.19	5.08	81.7	2.18	2.64
069	0.27	7.21	648.0	17.31	20.90
076	1.28	34.20	5,888.0	157.31	189.94
083	1.61	43.01	3,864.0	103.23	124.65
090	0.48	12.82	1,152.0	30.78	37.16
097 104	0.30 0.21	8.01	69.0	1.84	2.23
111	0.21	5.61 5.61	5,040.0 90.3	134.65 2.41	162.58 2.91
118	0.37	9.89	159.1	4.25	5.13
125	0.77	20.57	1,848.0	49.37	59.61
132	0.33	8.82	306.9	8.20	9.90
139	0.33	8.82	13.2	0.35	0.43
147	0.19	5.08	17.1	0.46	0.55
153	0.19	5.08	5.7	0.15	0.18
160	0.05	1.34	100.0	2.67	3.23
167	0.03	0.80	720.0	19.24	23.23
174	0.002	0.05	48.0	1.28	1.55
181	0.003	0.08	72.0	1.92	2.32
188	0.002	0.05	9.2	0.25	0.30
195	5.51	147.21	132,240.0	3,532.99	4,265.81
202	0.82	21.91	19,680.0	525.78	634.84
209 216	0.08 0.06	2.14 1.60	344.0 60.0	9.19 1.60	11.10 1.94
223	0.03	0.80	150.0	4.01	4.84
230	0.13	3.47	507.0	13.55	16.35
237	0.03	0.80	204.0	5.45	6.58
244	0.57	15.23	3,078.0	82.23	99.29
251	0.09	2.40	198.0	5.29	6.39
258	0.05	1.34	125.0	3.34	4.03
265	0.04	1.07	112.0	2.99	3.61
272	0.61	16.30	1,952.0	52.15	62.97
280	0.21	5.61	126.0	3.37	4.06
287	0.30	8.01	660.0	17.63	21.29
293	0.52	13.89	572.0	15.28	18.45
301	0.27	7.21	324.0	8.66	10.45
307	0.21	5.61	2,100.0	56.10	67.74
314 321	0.27 0.30	7.21 8.01	2,133.0 105.0	59.99 2.81	68.81 3.39
328	0.21	5.61	115.5	3.09	3.73
335	0.30	8.01	390.0	10.42	12.58
342	0.17	4.54	144.5	3.86	4.66
349	0.17	4.54	34.0	0.91	1.10
356	0.11	2.94	5.5	0.15	0.18
363	0.30	8.01	330.0	8.82	10.65

Table 4: Fecal coliform bacteria in surface water samples affected by water runoff and livestock density at watershed 105.

.

.

Table 5:

Fecal coliform bacteria in surface water samples affected by water runoff and livestock density at watershed 106.

Day of	Flow	Flow	FCx105	FCx106	FCx106
1975	Lx106/day	Lx103/	discharged/	discharged/	discharged/
		day/ha	day	day/ha	day/animal
006	0.11	1.24	264.0	2.98	17.60
013	3.75	42.28	90,000.0	1,014.66	6,000.00
027	0.77	8.68	1,848.0	20.83	123.20
034	0.52	5.86	1,248.0	14.07	83.20
041	0.71	8.00	7,810.0	88.05	520.67
049	0.66	7.44	1,386.0	15.63	92.40
055	0.82	9.24	3,772.0	42.53	251.47
062	0.44	4.98	2,024.0	22.82	134.93
069	0.37	4.17	888.0	10.01	59.20
076 083	2.49 2.83	28.07 31.91	59,760.0 67,920.0	673.73 [°] 765.73	3,984.00 4,528.00
090	1.07	12.07	802.5	9.05	53.50
090	0.71	8.00	1,491.0	16.81	99.40
104	0.66	7.44	990.0	11.16	66.00
111	0.71	8.00	305.3	3.44	20.35
118	0.30	3.38	1,380.0	15.56	92.00
125	1.69	19.05	7,774.0	87.64	518.27
132	3.08	34.72	6,468.0	72.92	431.20
139	3.08	34.72	4,620.0	52.09	308.00
147	0.94	10.60	874.2	9.86	58.28
153	0.88	9.92	26.4	0.30	1.76
160	0.15	1.69	3,600.0	40.59	240.00
167	0.40	4.51	9,600.0	108.23	640.00
174	0.27	3.04	567.0	6.39	37.80
181	0.27	3.04	6,480.0	73.06	432.00
188	0.13	1.47	3,120.0	35.17	208.00 17,376.00
195 202	10.86 1.60	122.44 18.04	260,640.0 38,400.0	2,938.44 432.92	2,560.00
202	0.19	2.14	703.0	7.93	46.87
216	0.09	1.01	315.0	3.55	21.00
223	0.09	1.01	360.0	4.06	24.00
230	0.37	4.17	851.0	9.59	56.73
237	0.06	0.68	90.0	1.01	6.00
244	1.07	12.06	12,840.0	144.76	856.00
251	0.24	2.71	576.0	6.49	38.40
258	0.05	0.56	70.0	0.79	4.67
265	0.15	1.69	915.0	10.32	61.00
272	1.28	14.43	4,096.0	46.18	273.07
280	0.57	6.43	2,166.0	24.42	144.40 213.00
287	0.71	8.00	3,195.0	36.02 92.76	548.53
293 301	1.21 0.71	13.64 8.00	8,228.0 1,136.0	12.81	75.73
307	0.61	6.88	1,220.0	13.75	81.33
314	0.71	8.00	4,686.0	52.83	312.40
321	0.77	8.68	1,232.0	13.89	82.13
328	0.52	5.86	1,092.0	12.31	72.80
335	0.77	8.68	2,156.0	24.31	143.73
342	0.52	5.86	832.0	9.38	55.47
349	0.52	5.86	156.0	1.76	10.40
356	0.37	4.17	666.0	7.51	44.40
363	0.66	7.44	547.8	6.18	36.52

Day of 1975	Flow Lx106/day	Flow Lx103/ day/ha	FCx106 discharged/ day	FCx106 discharged/ day/ha	FCx10 ⁶ discharged/ day/animal
006	0.04	1.36	1.6	0.05	0.05
013	0.84	28.57	-	-	-
027	0.19	6.46	17.1	0.58	0.57
034	0.12	4.08	10.8	0.37	0.36
041	0.19	6.46	7.6	0.26	0.25
049	0.17	5.78	5.1	0.17	0.17
055	0.23	7.82	9.2	0.31	0.31
062	0.14	4.76	21.0	0.71	0.70
069	0.11	3.74	25.3	0.86	0.84
076	0.98	33.33	735.0	25.00	24.50
083	0.54	18.37	12,960.0	440.82	432.00
090	0.25	8.50	57.5	1.96	1.92
097	0.30	10.20	60.0	2.04	2.00
104	0.14	4.76	60.2	2.05	2.01
111	0.14	4.76	12.6	0.43	0.42
118	0.17	5.78	15.3	0.52	0.51
125	0.28	9.52	1,288.0	43.81	42.93
132	0.12	4.08	4.8	0.16	0.16
139	0.19	6.46	5.7	0.19	0.19
147	0.12	4.08	16.8	0.57	0.56
153	0.12	4.08	3.6	0.12	0.12
160	0.08	2.72	1,920.0	65.31	64.00
167	0.05	1.70	1,200.0	40.82	40.00
174	0.045	1.53	207.0	7.04	6.90
181	0.04	1.36	184.0	6.26	6.13
188	0.01	0.34	240.0	8.16	8.00
195	1.78	60.54	42,720.0	1,453.06	1,424.00
202	0.66	22.45	15,840.0	538.78	528.00
209	0.07	2.38	91.0	3.10	3.03
216	0.045	1.53	67.5	2.30	2.25
223	0.045	1.53	22.5	0.77	0.75
230	0.06	2.04	660.0	22.45	22.00
237	0.07	2.38	31.5	1.07	1.05
244	0.11	3.74	1,320.0	44.93	44.00 5.50
251	0.05	1.70	165.0 22.0	5.62 0.75	0.73
258	0.02	0.68 1.53	274.5	9.34	9.15
265	0.045	1.55	2/4.5	9.34	5.15
272 280	-	-	_	_	-
280	-	-	-	_	-
293	-	-	-	_	-
301	-	-	_	_	_
307	-	_	_	-	-
314	_	-	_	-	-
321	_	-	-	-	-
328	_	-	-	-	-
335	_	-	-	-	-
342	-	-	-	-	-
349	-	-	-	-	-
356	-	-	-	-	-
363		_	_	_	_

Table 6:	Fecal coliform bacteria in surface water samples affected by water
	runoff and livestock density at watershed 107.

Day of 1975	Flow Lx106/day	Flow Lx103/ day/ha	FCx106 discharged/ day	FCx106 discharged/ day/ha	FCx106 discharged/ day/anima1
006	0.30	2.04	69.0	0.47	0.90
013	4.04	27.52	9,696.0	66.05	125.92
013	1.07	7.29	214.0	1.46	2.78
034	0.88	5.99	202.4	1.38	2.63
041	1.07	7.29	246.1	1.68	3.20
049	1.21	8.24	1,815.0	12.36	23.57
055	1.29	8.79	2,709.0	18.45	35.18
062	0.82	5.59	1,968.0	13.41	25.56
069	0.71	4.84	17,040.0	116.08	221.30
076	3.47	23.64	38,170.0	260.01	495.71
083	3.47	23.64	8,328.0	56.73	108.16
090	1.78	12.13	409.4	2.79	5.32
097	1.37	9.33	315.1	2.15	4.09
104	1.22	8.31	48.8	0.33	0.63
111	0.52	3.54	780.0	5.31	10.13
118	1.44	9.81	1,339.2	9.12	17.39
125	2.71	18.46	1,165.3	7.94	15.13
132	1.44	9.81	43.2	0.29	0.56 0.71
139	1.36	9.26	54.4 28.2	0.37 0.19	0.37
147	0.94	6.40	40.0	0.19	0.52
153	1.00 0.52	6.81 3.54	5,720.0	38.96	74.29
160 167	0.48	3.27	1,152.0	7.85	14.96
174	0.21	1.43	2,310.0	15.74	30.00
181	0.21	1.43	5,040.0	34.33	65.45
188	0.08	0.54	22.4	0.15	0.29
195	10.59	72.14	254,160.0	1,731.34	3,300.78
202	2.71	18.46	65,040.0	443.05	844.68
209	0.61	4.16	2,623.0	17.87	34.06
216	0.21	1.43	735.0	5.01	9.55
223	0.21	1.43	105.0	0.72	1.36
230	0.52	3.54	494.0	3.37	6.42
237	0.19	1.29	209.0	1.42	2.71
244	1.78	12.13	8,900.0	60.63	115.58
251	0.61	4.16	915.0	6.23	11.88
258	0.09	0.61	63.0	0.43	0.82 9.82
265	0.27	1.84	756.0	5.15 33.23	63.35
272	2.71	18.46 8.24	4,878.0 1,391.5	9.48	18.07
280	1.21	10.90	1,360.0	9.26	17.66
287 293	1.60 1.87	12.74	3,366.0	22.93	43.71
301	1.28	8.72	3,328.0	22.67	43.22
307	1.28	8.72	704.0	4.80	9.14
314	1.36	9.26	2,992.0	20.38	38.86
321	1.44	9.81	288.0	1.96	3.74
328	1.28	8.72	230.4	1.57	2.99
335	1.60	10.90	1,040.0	7.08	13.51
342	1.21	8.24	181.5	1.24	2.36
349	1.07	7.29	1,016.5	6.92	13.20
356	0.88	5.99	44.0	0.30	0.57
363	1.21	8.24	121.0	0.82	1.57

Table 7: Fecal coliform bacteria in surface water samples affected by water runoff and livestock density at watershed 108.

Months	101	102	103 -C x 108 d	Basins 105 ischarge/H	106	107	108
1974-75				ischarge/i		l	
December	10.93	79.42	11.13	-*	-*	13.51	36.54
January	4.08	7.23	0.53	8.54	73.67	0.063	4.84
February	2.01	4.02	3.20	2.45	11.83	0.05	3.20
March	91.02	56.47	49.81	21.60	102.09	32.73	30.48
April	6.57	10.78	3.82	13.45	9.41	3.27	1.73
May	0.24	0.09	0.10	0.64	9.46	0.07	0.07
June	8.16	7.16	40.17	1.75	15.98	8.36	6.77
July	243.19	147.83	134.96	284.88	239.26	140.37	153.79
August	13.78	24.57	15.70	7.36	11.16	4.84	4.62
September	2.56	3.47	2.52	4.46	4.45	1.09	3. 15
October	3.20	3.70	1.91	7.07	12.58	_*	4.48
November	2.60	3.58	2.23	4.61	5.53	-*	2.01
Annual	388.34	348.32	265.27	356.81	495.42	204.35	24 9. 95

Table 8: Fecal coliform discharge per unit area from seven Rhode River basins of water year 1974-75.

* = weir inoperable

.

Day of	Flow	Flow	FSx10 ⁶	FSx105	FSx106
1975	Lx106/day	Lx103/ day/ha	discharged/	discharged/ day/ha	discharged/ day/animal
		uay/na	day	uay/na	uay/an mai
006	0.52	2.17	_*	-	-
013	3.34	13.95	-	-	-
027	1.97	8.23	-	-	-
034	1.44	6.02	216.0	0.90	0.66
041	1.78	7.44	4,272.0	17.84	13.10
049	1.88	7.85	4,512.0	18.85	13.84 175.21
055	2.38 1.29	9.94 5.39	57,120.0 1,935.0	238.60 8.08	5.94
062 069	1.14	4.76	2,736.0	11.43	8.39
076	6.65	27.78	73,150.0	305.56	224.39
083	5.33	22.26	127,920.0	534.34	392.39
090	4.19	17.50	879.9	3.68	2.70
097	2.06	8.60	4,944.0	20.65	15.17
104	1.61	6.73	144.9	0.61	0.44
111	1.61	6.73	450.8	1.88	1.38
118	2.27	9.48	5,448.0	22.76	16.71
125	4.35	18.17	870.0	3.63	2.67
132	1.97	8.23	1,832.1	7.65	5.62 5.62
139 146	1.97 1.29	8.23 5.39	1,832.1 30,960.0	7.65 129.32	94.97
153	1.61	6.73	7,406.0	30.94	22.72
160	0.57	2.38	13,680.0	57.14	41.96
167	0.48	2.01	11,520.0	48.12	35.34
174	0.30	1.25	7,200.0	30.08	22.09
181	0.27	1.13	6,480.0	27.07	19.88
188	0.17	0.71	4,080.0	17.04	12.52
195	26.82	112.03	643,680.0	2,688.72	1,974.48
202	5.69	23.77	136,560.0	570.43	418.90
209	0.61 0.27	2.55 1.13	6,710.0 7,560.0	28.03 31.58	20.58 23.19
216 223	0.44	1.13	7,480.0	31.24	22.94
230	1.97	8.23	25,610.0	106.98	78.56
237	0.44	1.84	8,360.0	34.92	25.64
244	3.61	15.08	129,960.0	542.86	398.65
251	1.07	4.47	8,025.0	33.52	24.62
258	0.37	1.55	2,886.0	12.06	8.85
265	0.57	2.38	5,529.0	23.10	16.96
272	3.47	14.49	14,574.0	60.88	44.71 25.03
280 287	1.60 2.27	6.68 9.48	8,160.0 8,853.0	34.09 36.98	27.16
293	3.08	12.87	5,852.0	24.44	17.95
301	2.17	9.06	3,472.0	14.50	10.65
307	1.60	6.68	1,920.0	8.02	5.89
314	1.69	7.06	6,760.0	28.24	20.74
321	2.07	8.65	3,829.5	16.00	11.75
328	1.60	6.68	800.0	3.34	2.45
335	2.07	8.65	3,933.0	16.43	12.06
342	1.44	6.02	2,016.0	8.42	6.18
349	1.52	6.35	· 6,232.0	26.03	19.12 3.85
356	1.14	4.76 7.81	1,254.0 748.0	5.24 3.12	2.29
363	1.87	7.01	/40.0	3.12	L.LJ

Table 9:	Fecal Streptococcus in surface water samples affected by water runoff
	and livestock density in watershed 101.

-90-

Day of	Flow	Flow	FSx10b	FSx106	Fsx10 ⁶
1975	Lx103/day	Lx103/ day/ha	discharged/ day	discharged/ day/ha	discharged/ day/animal
	0.44				
006	0.44	2.44	_*	-	-
013 027	2.71	15.05	-	-	-
027	1.78 1.21	9.88 6.72	- 907.5	- 5 04	- 22 27
041	1.78	9.88	19,580.0	5.04 108.72	23.27 502.05
049	1.69	9.38	388.7	2.16	9.97
055	2.17	12.05	5,208.0	28.92	133.54
062	1.07	5.94	32.1	0.18	0.82
069	0.09	0.50	8.1	0.04	0.21
076	6.64	36.87	13,944.0	77.42	357.54
083	5.69	31.59	62,590.0	347.53	1,604.87
090	2.38	13.21	71.4	0.40	1.83
097	1.52	8.44	653.6	3.63	16.76
104	1.14	6.33	45.6	0.25	1.17
111	1.14	6.33	79.8	0.44	2.05
118	1.97	10.94	453.1	2.52	11.62
125	3.90	21.65	3,627.0	20.14	93.00
132	1.69	9.38	338.0	1.88	8.67
139	1.78	9.88	1,655.4	9.19	42.45
147	0.88	4.89	4,048.0	22.48	103.79
153	0.88	4.89	9,680.0	53.75	248.21
160	0.33	1.83	7,920.0	43.98	203.08
167 174	0.27	1.50 0.83	6,480.0	35.98 19.99	166.15 92.31
181	0.15 0.15	0.83	3,600.0 1,650.0	9.16	42.31
188	0.15	0.85	1,000.0	9.10	42.51
195	10.59	58.80	254,160.0	1,411.22	6,516.92
202	6.26	34.76	150,240.0	334.20	3,852.31
209	0.44	2.44	4,840.0	26.87	124.10
216	0.21	1.17	8,610.0	47.81	220.77
223	0.19	1.05	4,370.0	24.26	112.05
230	1.21	6.72	22,990.0	127.65	589.49
237	0.24	1.33	8,160.0	45.31	209.23
244	2.83	15.71	186,780.0	1,037.09	4,789.23
251	0.71	3.94	4,970.0	27.60	127.44
258	0.27	1.50	2,268.0	12.59	58.15
265	0.40	2.22	2,360.0	13.10	60.51
272	2.71	15.05	27,100.0	150.47	694.87 139.92
280 287	1.07	5.94 8.00	5,457.0 9,360.0	30.30 51.97	240.00
293	1.44 2.27	12.60	9,080.0	50.42	232.82
301	2.17	12.00	8,897.0	49.40	228.13
307	1.14	6.33	2,964.0	16.46	76.00
314	1.21	6.72	14,520.0	80.62	372.31
321	1.69	9.38	4,394.0	24.40	112.67
328	1.63	9.05	1,141.0	6.34	29.26
335	1.60	8.88	5,920.0	32.87	151.79
342	1.14	6.33	1,083.0	6.01	27.77
349	1.14	6.33	1,026.0	5.70	26.31
356	0.82	4.55	1,886.0	10.47	48.36
	1.52	8.44	1,185.6	6.58	30.40

Table 10: Fecal Streptococcus in surface water samples affected by water runoff and livestock density in watershed 102.

Day of 1975	Flow Lx106/day	Flow Lx103/ day/ha	FSx106 discharged/ day	FSx106 discharged / day/ha	FSx106 discharged/ day/animal
006	0.37	1.45	_*	-	-
013	3.47	13.64	-	-	-
027	1.52	5.97	-	-	-
034	1.14	4.48	262.2	1.03	3.12
041	1.87	7.35	1,739.1	6.84	20.70
049	1.87	7.35	8,602.0	33.81	102.40
055	2.27	8.92	3,405.0	13.38	40.54
062	1.21	4.76	48.4	0.19	0.58 1.91
069 076	1.07 6.45	4.21 25.35	160.5 5,998.5	0.63 23.58	71.41
083	6.85	26.93	31,510.0	123.86	375.12
090	3.08	12.11	123.2	0.48	1.47
097	2.38	9.36	547.4	2.15	6.52
104	1.78	7.00	71.2	0.28	0.85
111	1.69	6.64	152.1	0.60	1.81
118	2.83	11.12	424.5	1.67	5.05
125	4.66	18.32	1,071.8	4.21	12.76
132	2.49	9.79	224.1	0.88	2.67
139	2.27	8.92	2,111.1	8.30	25.13
147	1.36	5.35	2,040.0	8.02	24.29
153	1.36	5.35 2.24	6,256.0 13,680.0	24.59 53.77	74.48 162.86
160 167	0.57 5.69	22.24	136,560.0	536.79	1,625.71
174	0.24	0.94	2,640.0	10.38	31.43
181	0.24	0.94	576.0	2.26	6.86
188	0	0	-	_	-
195	17.06	67.06	409,440.0	1,609.43	4,874.29
202	3.34	13.13	80,160.0	315.09	954.29
209	0.57	2.24	4,560.0	17.92	54.29
216	0.15	0.58	3,150.0	12.38	37.50
223	0.18	0.70	1,620.0	6.37	19.29
230	1.97	7.74	12,805.0	50 .3 3	152.44
237 244	2.17	8.53	130,200.0	511.79	1,550.00
251	0.61	2.40	4,880.0	19.18	58.10
258	0.11	0.43	539.0	2.12	6.42
265	0.40	1.57	2,640.0	10.38	31.43
272	4.04	15.88	14,544.0	57.17	173.14
280	1.44	5.66	3,888.0	15.28	46.29
287	2.07	8.14	6,831.0	26.85	81.32
293	2.83	11.12	5,660.0	22.25	67.38
301	1.78	7.00	3,738.0	14.69	44.50
307	1.69	6.64 9.79	1,183.0 19,671.0	4.65 77.32	14.08 234.18
314 321	2.49 2.17	9.79 8.53	1,953.0	7.68	23.25
328	1.87	7.35	2,618.0	10.29	31.17
335	2.17	8.53	4,557.0	17.91	54.25
342	1.78	7.00	1,780.0	7.00	21.19
349	1.78	7.00	979.0	3.85	11.65
356	1.36	5.35	272.0	1.07	3.24
	2.07		828.0	3.25	9.86

-92 Table ll: Fecal streptococcus in surface water samples affected by water runoff and livestock density in watershed 103.

* = not calculated

Day of 1975	Flow Lx106/day	Flow Lx10 ³ / day/ha	FSx106 discharged/ day	FSx106 discharged/ day/ha	FSx106 discharged/ day/animal
006	0,06	1.60	_*	_	_
013	1.87	49.96	-	-	-
027	0.33	8.82	-	-	-
034	0.21	5.61	504.0	13.47	16.26
041	0.30	8.01	27.0	0.72	0.87
049	0.33	8.82	23.1	0.62	0.75
055	0.37	9.89	144.3	3.86	4.65
062	0.19	5.08	81.7	2.18	2.64
069	0.27	7.21	251.1	6.71	8.10
076	1.28	34.20	14,080.0	376.17	454.19
083	1.61	43.01	17,710.0	473.15	571.29 3.56
090	0.48	12.82	110.4 225.0	2.95 6.01	7.26
097 104	0.30 0.21	8.01 5.61	8.4	0.22	0.27
111	0.21	5.61	14.7	0.39	0.47
118	0.37	9.89	55.5	1.48	1.79
125	0.77	20.57	1,848.0	49.37	59.61
132	0.33	8.82	13.2	0.35	0.43
139	0.33	8.82	306.9	8.20	9.90
147	0.19	5.08	2,090.0	55.84	67.42
153	0.19	5.08	2 ,09 0.0	55.84	67.42
160	0.05	1.34	1,200.0	32.06	38.71
167	0.03	0.80	720.0	19.24	23.23
174	0.002	0.05	48.0	1.28	1.55
181	0.003	0.08	33.0	0.88	1.06
188	0.002	0.05	4.2	0.11	0.14 4,265.81
195 202	5.51 0.82	147.21 21.91	132,240.0 19,680.0	3,532.99 525.78	634.84
202	0.08	2.14	1,760.0	47.02	56.77
216	0.06	1.60	2,340.0	62.52	75.48
223	0.03	0.80	1,200.0	32.06	38.71
230	0.13	3.47	1,690.0	45.15	54.52
237	0.03	0.80	600.0	16.03	19.35
244	0.57	15.23	29,070.0	776.65	937.74
251	0.09	2.40	1,350.0	36.07	43.55
258	0.05	1.34	260.0	6 .9 5	8.39
265	0.04	1.07	232.0	6.20	7.48 108.23
272	0.61	16.30 5.61	3,355.0 1,008.0	89.63 26.93	32.52
280 287	0.21 0.30	8.01	990.0	26.45	31.94
293 ·	0.52	13.89	1,092.0	29.17	35.23
301	0.27	7.21	391.5	10.46	12.63
307	0.21	5.61	1,239.0	33.10	39.97
314	0.27	7.21	3,240.0	86.56	104.52
321	0.30	8.01	210.0	5.61	6.77
328	0.21	5.61	52.5	1.40	1.69
335	0.30	8.01	810.0	21.64	26.13
342	0.17	4.54	110.5	2.95	3.56
349	0.17	4.54	59.5	1.59	1.92
356	0.11	2.94	82.5	2.20	2.66
363	0.30	8.01	450.0	12.02	14.52

Table 12: Fecal Streptococcus in surface water samples affected by water runoff and livestock density in watershed 105.

Day of	Flow	Flow	FSx106	FSx106	FSx106
Day of 1975	Lx106/day	Lx103/	discharged/	discharged/	discharged/
1975	LXIU-/uay	day/ha	day	day/ha	day/animal
		dujjina	duj	duyynu	aug/ arrina i
006	0.11	1.24	_*	-	-
013	3.75	42.28	-	-	-
027	0.77	8.68	-	· _	
034	0.52	5.86	5,720.0	64.49	381.33
041	0.71	8.00	3,266.0	36.82	217.73
049	0.66	7.44	7,260.0	81.85	484.00
055 062	0.82 0.44	9.24 4.98	1,230.0 409.2	13.87	82.00 27.28
062	0.44	4.98	888.0	4.61 10.01	59.20
076	2.49	28.07	27,390.0	308.79	1,826.00
083	2.83	31.91	31,130.0	350.96	2,075.33
090	1.07	12.07	995.1	11.22	66.34
097	0.71	8.00	305.3	3.44	20.35
104	0.66	7.44	7,260.0	81.85	484.00
111	0.71	8.00	78.1	0.88	5.21
118	0.30	3.38	279.0	3.15	18.60
125	1.69	19.05	1,571.7	17.72	104.78
132	3.08	34.72	14,168.0	159.73	944.53
139	3.08	34.72	14,168.0	159.73	944.53
147 153	0.94 0.88	10.60 9.92	22,560.0 21,120.0	254.34 238.11	1,504.00 1,408.00
160	0.15	1.69	3,600.0	40.59	240.00
167	0.40	4.51	9,600.0	108.23	640.00
174	0.27	3.04	6,480.0	73.06	432.00
181	0.27	3.04	6,480.0	73.06	432.00
188	0.13	1.47	1,430.0	16.12	95.33
195	10.86	122.44	260,640.0	2,938.44	17,376.00
202	1.60	18.04	38,400.0	432.92	2,560.00
209	0.19	2.14	3,040.0	34.27	202.67
216	0.09	1.01	2,160.0	24.35	144.00
223 230	0.09 0.37	1.01 4.17	765.0 2,590.0	8.62 29.20	51.00 172.67
230	0.06	0.68	1,980.0	22.32	132.00
244	1.07	12.06	58,850.0	663.47	3,923.33
251	0.24	2.71	1,560.0	17.59	104.00
258	0.05	0.56	140.0	1.58	9.33
265	0.15	1.69	1,140.0	12.85	76.00
272	1.28	14.43	5,376.0	60.61	358.40
280	0.57	6.43	2,394.0	26.99	159.60
287	0.71	8.00	6,745.0	76.04	449.67
293 301	1.21 0.71	13.64 8.00	4,356.0 781.0	49.11 8.80	290.40 52.07
3 07	0.61	6.88	1,159.0	13.07	77.27
314	0.71	8.00	3,195.0	36.02	213.00
321	0.77	8.68	1,463.0	16.49	97.53
328	0.52	5.86	2,704.0	30.48	180.27
335	0.77	8.68	3,619.0	40.80	241.27
342	0.52	5.86	2,028.0	22.86	135.20
349	0.52	5.86	182.0	2.05	12.13
356	0.37	4.17	1,702.0	19.19	113.47
363	0.66	7.44	1,320.0	14.88	88.00

Table 13: Fecal Streptococcus in surface water samples affected by water runoff and livestock density in watershed 106.

Day of 1975	Flow Lx106/day	Flow Lx103/	FSx106 discharged/	FSx10 ⁶ discharged/	FSx106 discharged/
		day/ha	day	day/ha	day/animal
006	0.04	1.36	_*	_	_
013	0.84	28.57	-	-	-
027	0.19	6.46	-	-	_
034	0.12	4.08	3.6	0.12	0.12
041	0.19	6.46	38.0	1.29	1.27
049	0.17	5.78	25.5	0.87	0.85
055	0.23	7.82	48.3	1.64	1.61
062	0.14	4.76	5.6	0.19	0.19
069	0.11	3.74	47.3	1.61	1.58
076	0.98	33.33	1,470.0	50.03	49.00
083	0.54	18.37	12,960.0	441.12	432.00
090	0.25	8.50	600.0	20.42	20.00
097	0.30	10.20	720.0	24.51	24.00
104	0.14	4.76	60.2	2.05	2.01
111 118	0.14 0.17	4.76 5.78	210.0 35.7	7.15 1.22	7.00 1.19
125	0.28	9.52	260.4	8.86	8.68
132	0.12	4.08	288.0	9.80	9.60
139	0.12	6.46	874.0	29.75	29.13
147	0.12	4.08	2,880.0	98.03	96.00
153	0.12	4.08	1,320.0	44.93	44.00
160	0.08	2.72	1,920.0	65.35	64.00
167	0.05	1.70	1,200.0	40.84	40.00
174	0.045	1.53	1,080.0	36.76	36.00
181	0.04	1.36	440.0	14.98	14.67
188	0.01	0.34	240.0	8.17	8.00
195	1.78	60.54	42,720.0	1,454.05	1,424.00
202	0.66	22.45	15,840.0	539.14	528.00
209	0.07	2.38	910.0	30.97	30.33
216	0.045	1.53	2,025.0	68.92	67.50
223	0.045	1.53	12,600.0	428.86	420.00
230 237	0.06 0.07	2.04 2.38	1,140.0 1,260.0	38.80 42.89	38.00 42.00
237	0.11	3.74	5,060.0	172.23	168.67
251	0.05	1.70	950.0	32.33	31.67
258	0.02	0.68	420.0	14.30	14.00
265	0.045	1.53	630.0	21.44	21.00
272	-	-	-	-	-
280	-	-	-	-	-
287	-	-	-	-	-
293	-	-	-	-	-
301	-	-	-	-	-
307	-	-	-	-	-
314	-	-	-	-	-
321	-	-	-	-	-
328	-	-	-	-	-
335	-	-	-	-	-
342	-	-		-	-
349	-		-	-	-
356 363	-		-	-	- ·_
202	-	-	-	-	-

Table 14: Fecal Streptococcus in surface water samples affected by water runoff and livestock density in watershed 107.

Day of 1975	Flow Lx106/day	Flow Lx103/	FSx106 discharged/	FSx10b discharged/	FSx106 discharged/
		day/ha	day	day/ha	day/animal
006	0.30	2.04	_*	_	_
013	4.04	27.52		-	-
027	1.07	7.29	-	-	-
034	0.88	5.99	176.0	1.20	2.29
041	1.07	7.29	32.1	0.22	0.42
049	1.21	8.24	36.3	0.25	0.47
055	1.29	8.79	3,096.0	21.09	40.21
062	0.82	5.59	73.8	0.50	0.96
069	0.71	4.84	1,704.0	11.61	22.13
076	3.47	23.64	381.7	2.60	4.96
083	3.47	23.64	3,227.1	21.98	41.91
090	1.78	12.13	160.2	1.09	2.08
097	1.37	9.33	3,288.0	22.40	42.70
104	1.22	8.31	524.6	3.57	6.81
111	0.52	3.54	78.0 129.6	0.53	1.01
118 125	1.44 2.71	9.81 18.46	2,520.3	0.88 17.17	1.68 32.73
132	1.44	9.81	216.0	1.47	2.81
139	1.36	9.26	584.8	3.98	7.59
147	0.94	6.40	22,560.0	153.68	292.99
153	1.00	6.81	11,000.0	74.93	142.86
160	0.52	3.54	5,720.0	38.96	74.29
167	0.48	3.27	2,208.0	15.04	28.68
174	0.21	1.43	5,040.0	34.33	65.45
181	0.21	1.43	5,040.0	34.33	65.45
188	0.08	0.54	1,920.0	13.08	24.94
195	10.59	72.14	254,160.0	1,731.34	3,300.75
202	2.71	18.46	65,040.0	443.05	844.68
209	0.61	4.16	10,370.0	70.64	134.68
216	0.21	1.43	4,200.0	28.61	54.55
223 230	0.21 0.52	1.43 3.54	3,150.0 9,880.0	21.46 67.30	40.91 128.31
230	0.19	1.29	3,990.0	27.18	51.82
244	1.78	12.13	87,220.0	594.14	1,132.73
251	0.61	4.16	6,100.0	41.55	79.22
258	0.09	0.61	639.0	4.35	8.30
265	0.27	1.84	2,970.0	20.23	38.57
272	2.71	18.46	10,027.0	68.30	130.22
280	1.21	8.24	3,630.0	24.73	47.14
287	1.60	10.90	5,600.0	38.15	72.73
293	1.87	12.74	4,862.0	33.12	63.14
301	1.28	8.72	4,992.0	34.01	64.83
307	1.28	8.72	1,920.0	13.08	24.94
314	1.36	9.26	6,800.0	46.32	88.31 8.42
321 328	1.44 1.28	9.81 8.72	648.0 320.0	4.41 2.18	4.16
328 335	1.60	10.90	1,440.0	9.81	18.70
335	1.00	8.24	1,089.0	7.42	14.14
342	1.07	7.29	139.1	0.95	1.81
356	0.88	5.99	132.0	0.90	1.71
363	1.21	8.24	302.5	2.06	3.93
*					

Table 15: Fecal Streptococcus in surface water samples affected by water runoff and livestock density in watershed 108.

	Colif	orms		TVC In	cubation
Day of	тс	FC	FC/TC	48 Hr.	7_days
1975	MPN/1	00 m1	Ratio	Cells/	ml x 103
006	2,400	1,100	0.46	2.0	6.0
013	2,400	11	0.005	660.0	830.0
027	240	25	0.10	3.0	13.0
034	460	460	1.0	240.0	570.0
041	43	43	1.0	TNTC*	TNTC
049	240	240	1.0	TNTC	TNTC
055	460	28	0.06	350.0	460.0
062	43	43	1.0	6.0	6.3
069	460	460	1.0	170.0	3,500.0
076	2,400	2,400	1.0	14.0	25.0
083	2,400	2,400	1.0	77.0	100.0
090	93	23	0.25	27.0	60.0
097	460	460	1.0	93.0	110.0
104	43	43	1.0	1.7	3.0
111	39	39	1.0	660.0	1,300.0
118	460	460	1.0	7.7	23.0
125	1,100	1,100	1.0	11.0	30.0
132	150	15	0.1	120.0	210.0
139	460	4	0.01	23.0	33.0
147	2,400	23	0.01	23.0	30.0
153	2,400	7	0.003	7.3	10.0
160	1,100	200	0.18	7.0	9.7
167	2,400	2,400	1.0	5.0	5.3
174	2,400	2,400	1.0	6.7	8.7
181	2,400	2,400	1.0	4.0	8.0
188	1,100	1,100	1.0	19.0	22.0
195	2,400	2,400	1.0	700.0	TNTC
202	2,400	2,400	1.0	94.0	150.0

Table 16:	Estimated total and fecal coliform bacteria, FC/TC ratio, and
	total viable aerobic heterotrophic bacteria (TVC) in surface samples at weir 101 (North Branch).

*TNTC = Too numerous to count TC = Total coliforms FC = Fecal coliforms TVC = Total viable counts

	Coli	TVC Inc	cubation		
Day of	тс	FC	FC/TC	48 hr.	7 days
1975	Cells	/100 m1	Ratio	Cells >	<u>< 10³/m1 Č</u>
209	1200	300	0.25	TNTC*	TNTC
216	2100	300	0.14	2.0	2.0
223	1200	250	0.21	25.0	25.0
230	2100	350	0.17	13.0	19.0
237	1000	120	0.12	19.0	TNTC
244	5300	960	0.12	35.5	46.0
251	1700	190	0.11	5.7	7.0
258	1600	180	0.11	10.0	33.3
265	1100	250	0.23	4.7	6.0
272	750	120	0.16	11.0	14.3
280	350	40	0.11	3.7	6.3
287	430	250	0.58	13.0	17.3
293	580	120	0.21	1.7	4.3
301	100	15	0.15	8.0	10.6
307	10	10	1.00	4.0	5.3
314	440	440	1.00	6.5	9.3
321	50	_**	-	2.9	4.1
328	50	50	1.00	2.5	3.7
335	-	60	-	6.1	7.9
342	-	95	-	2.2	6.0
349	-	40	-	0.97	1.2
356	_	10	_	1.1	1.7
363	-	3	-	3.3	4.2

Table 17: Estimated total and fecal coliform bacteria, FC/TC ratio, and total viable aerobic heterotrophic bacteria in surface samples at weir 101 (North Branch).

* = Too numerous to count ** = Not tested TC = Total coliforms FC = Fecal coliforms TVC = Total viable counts

••••= ••••••••	Col	iforms		TVC Incubation	
Day of	тс	FC	FC/TC	48 hr.	7_days
1975	MPN/100 m1		Ratio	TVC Incubation 48 hr. 7 days Cells/ml x 10 ³	
006	93	43	0.46	2.6	8.2
013	1,100	460	0.42	20.0	50.0
027	240	240	1.0	6.0	42.0
034	460	240	0.52	590.0	690.0
041	460	460	1.0	TNTC*	TNTC
049	39	39	1.0	TNTC	TNTC
055	93	93 -	1.0	37.0	93.0
062	43	15	0.35	13.0	23.0
069	43	43	1.0	2.0	3.7
076	240	240	1.0	18.0	34.0
083	2,400	2,400	1.0	67.0	87.0
090	240	93	0.39	310.0	350.0
097	43	43	1.0	2.7	10.0
104	460	460	1.0	490.0	500.0
111	460	460	1.0	TNTC	TNTC
118	460	460	1.0	2.7	14.0
125	240	240	1.0	4.0	11.0
132	240	9	0.04	13.0	20.0
139	240	3	0.01	11.0	23.0
147	460	9 3 3 3	0.01	40.0	60.0
153	460	-	0.01	10.0	TNTC
160	2,400	2,400	1.0	90.0	160.0
167	2,400	2,400	1.0	4.0	5.3
174	1,100	1,100	1.0	5.7	7.0
181	2,400	2,400	1.0	5.7	9.0
188	no flow	no flow	no flow	no flow	no flow
195	2,400	2,400	1.0	82.0	110.0
202	2,400	2,400	1.0	72.0	80.0

Table 18: Estimated total and fecal coliform bacteria, FC/TC ratio, and total viable aerobic heterotrophic bacteria (TVC) in surface samples at weir 102 (Blue Jay Branch).

*TNTC = Too numerous to count TC = Total coliforms FC = Fecal coliforms TVC = Total viable counts

.

	Coliforms				TVC Incubation	
Day of	TC	FC	FC/TC	48 hr.	7 days	
1975	Cells	s/100 ml	Ratio	Cells x 103/m1		
209	930	100	0.11	6.7	7.3	
216	3900	150	0.04	60.0	80.0	
223	1000	400	0.40	20.0	30.0	
230	3000	320	0.01	14.7	16.7	
237	2200	190	0.09	19.7	23.3	
244	3900	2200	0.56	125.0	145.0	
251	1500	260	0.17	10.0	13.0	
258	1400	320	0.23	3.3	6.0	
265	1200	280	0.23	4.7	7.3	
272	1300	210	0.16	19.3	29.6	
280	450	50	0.11	4.0	10.7	
287	360	140	0.39	73.0	96.0	
293	640	220	0.34	4.3	9.0	
301	120	120	1.00	160.0	320.0	
307	60	55	0.92	6.0	13.0	
314	310	310	1.00	4.7	7.1	
321	260	260	1.00	4.9	7.7	
328	70	65	0.93	2.6	4.1	
335	_*	290	-	5.8	7.2	
342	-	15	-	2.2	3.8	
349	-	20	-	1.2	1.9	
356	-	190	-	2.1	3.3	
363	-	40	-	1.9	TNTC**	

Table 19: Estimated total and fecal coliform bacteria, FC/TC ratio, and total viable aerobic heterotrophic bacteria in surface samples at weir 102 (Blue Jay Branch).

* = Not tested ** = Too numerous to count TC = Total coliforms FC = Fecal coliforms TVC = Total viable counts

	Colifo		TVC In	cubation	
Day of	TC	FC	FC/TC	48 hr.	7 davs
1975	MPN/10)0 m1	Ratio	Cells/	m1 x 103
006	1,100	210	0.19	4.0	8.0
013	2,400	lost	-	370.0	700.0
027	43	43	1.0	7.2	22.0
034	43	43	1.0	7.0	TNTC*
041	43	43	1.0	TNTC	TNTC
049	460	460	1.0	1,700.0	2,200.0
055	75	43	0.57	4.0	15.0
062	93	93	1.0	57.0	67.0
069	93	43	0.46	30.0	450.0
076	240	240	1.0	8.0	13.0
083	2,400	2,400	1.0	20.0	93.0
090	150	23	0.15	32.0	33.0
097	43	43	1.0	2.0	8.3
104	39	39	1.0	37.0	57.0
111	23	23	1.0	3.7	16.0
118	23	23	1.0	TNTC	TNTC
125	240	240	1.0	4.7	17.0
132	460	9	0.02	13.0	22.0
139	240	4	0.02	3.7	15.0
147	240	3	0.01	3.7	8.3
153	1,100	4	0.004	7.0	15.0
160	460	460	1.0	6.7	9.0
167	2,400	2,400	1.0	260.0	340.0
174	460	460	1.0	4.3	7.3
181	2,400	2,400	1.0	37.0	47.0
188	no flow	no flow	no flow	no flow	no flow
195	2,400	2,400	1.0	39.0	56.0
202	2,400	2,400	1.0	7.0	12.0

Table 20: Estimated total and fecal coliform bacteria, FC/TC ratio, and total viable aerobic heterotrophic bacteria (TVC) in surface samples at weir 103 (Williamson Branch).

*TNTC = Too numerous to count TC = Total coliforms FC = Fecal coliforms TVC = Total viable counts

	Coli	TVC Incubation			
Day of	ТС	FC	FC/TC	48 hr.	7 days
1975	Cells	/100 m1	Ratio	Cells	<u>x 103/m1</u>
209	800	130	0.16	TNTC*	TNTC
216	1800	100	0.06	2.0	3.0
223	950	150	0.16	6.0	10.3
230	1800	130	0.07	10.3	11.3
230	_**	150	0.07		
		2500	0 46	36.7	56.7
244	5400	2500	0.46	75.0	105.0
251	2000	130	0.07	4.3	7.7
258	1500	280	0.19	1.3	7.0
265	950	100	0.11	13.3	20.0
272	1100	190	0.17	206.0	262.0
280	300	85	0.28	4.3	7.0
287	160	50	0.31	-	-
293	660	140	0.21	1.0	3.9
301	190	45	0.24	4.7	6.6
307	60	20	0.33	20.0	47.0
314	110	110	1.00	6.1	8.6
322	70	70	1.00	1.8	3.5
328	30	25	0.83	1.4	3.8
335	-	95	-	3.3	5.2
342	-	130	-	1.4	3.8
349	-	20	-	0.70	1.6
356	_	110	-	0.53	1.6
363	-	15	_	1.2	2.3
		10			

Table 21: Estimated total and fecal coliform bacteria, FC/TC ratio, and total viable aerobic heterotrophic bacteria in surface samples at weir 103 (Williamson Branch).

* = Too numerous to count
** = Not tested
TC = Total coliforms
FC = Fecal coliforms
TVC = Total viable counts

Coli		TVC In	cubation	
TC	FC	FC/TC		7 davs
	- <u> </u>	- M- eka eka ada ada ada ada ada - eka ada di ada ada ada ada ada ada ada ada		
1,100	460	0.42	1.0	15.0
1,100	210	0.19	70.0	230.0
93	15	0.16	5.1	42.0
460	150	0.33	53.0	85.0
. 93	93	1.0	TNTC*	TNTC
240	240	1.0	8.0	15.0
43	43	1.0	2.0	4.7
43	43	1.0	2.3	4.7
240	240	1.0	13.0	57.0
460	460	1.0	7.7	13.0
240	240			70.0
240	240	1.0		97.0
93	23		37.0	53.0
2,400	2,400	1.0	4.0	7.3
43	43			550.0
43	43			TNTC
240	240	1.0	8.3	21.0
240	93	0.39		27.0
460	4	0.01	16.0	TNTC
2,400	9	0.003		TNTC
460		0.01		7.0
1,100	200	0.18		97.0
2,400	2,400	1.0		11.0
2,400	2,400			3.7
2,400	2,400	1.0	4.0	7.7
2,400	460	0.19		TNTC
2,400		1.0		73.0
2,400	2,400	1.0	33.0	43.0
	TC MPN/ 1,100 1,100 93 460 93 240 43 43 240 240 240 240 240 240 240 240 240 240	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Table 22: Estimated total and fecal coliform bacteria, FC/TC ratio, and total viable aerobic heterotrophic bacteria (TVC) in surface samples at weir 105 (Sellman North).

*TNTC = Too numerous to count TC = Total coliforms FC = Fecal coliforms TVC = Total viable counts

	Coli	forms		TVC Inc	cubation
Day of	TC	FC	FC/TC	48 hr	7 days
1975	Cells	s/100 m1	Ratio	Cells >	<u>< 10³/m1</u>
209	1700	430	0.25	40.0	TNTC*
216	3200	100	0.03	113.0	133.0
223	2600	500	0.19	TNTC	TNTC
230	1700	390	0.23	6.3	7.0
237	1700	680	0.40	23.0	27.0
244	3000	540	0.18	33.0	40.7
251	1700	220	0.13	8.7	10.0
258	2400	250	0.10	13.0	14.7
265	1600	280	0.18	7.0	8.3
272	1100	320	0.29	25.0	36.0
280	800	60	0.08	9.3	12.7
287	440	220	0.50	200.0	276.0
293	740	110	0.15	8.0	14.0
301	290	120	0.41	3.3	5.6
307	1000	1000	1.00	2.6	5.3
314	790	790	1.00	9.0	19.3
321	50	35	0.70	1.4	6.5
328	55	55	1.00	2.2	3.6
335	_**	130	-	21.7	28.3
342	-	85	-	2.3	3.8
349	-	20	-	1.5	2.2
356	-	5	_	1.4	2.8
363	-	110	-	2.0	3.9

Table 23: Estimated total and fecal coliform bacteria, FC/TC ratio, and total viable aerobic heterotrophic bacteria in surface samples at weir 105 (Sellman North).

TC = Total coliforms FC = Fecal coliforms TVC = Total viable counts * = Too numerous to count ** = Not tested

	Coli	forms		TVC In	cubation
Day of	TC	FC	FC/TC	48 hr.	7 days
1975	MPN/	'100 m1	Ratio	Cells/	cubation 7 days ml x 10 ³
		<u> </u>			
006	240	240	1.0	1.0	14.0
013	2,400	2,400	1.0	560.0	1400.0
027	460	240	0.52	8.2	14.0
034	240	240	1.0	TNTC*	TNTC
041	1,100	1,100	1.0	TNTC	TNTC
049	210	210	1.0	15.0	32.0
055	460	460	1.0	3.3	5.7
062	460	460	1.0	3.7	5.7
069	240	240	1.0	3.7	5.3
076	2,400	2,400	1.0	11.0	36.0
083	2,400	2,400	1.0	130.0	200.0
090	1,100	75	0.07	490.0	520.0
097	1,100	210	0.19	2.0	5.7
104	150	150	1.0	8.0	10.0
111	43	43	1.0	30.0	57.0
118	460	460	1.0	5.7	20.0
125	460	460	1.0	9.7	23.0
132	2,400	210	0.09	250.0	290.0
139	2,400	150	0.06	29.0	40.0
147	2,400	93	0.04	27.0	40.0
153	2,400	3	0.001	9.0	14.0
160	2,400	2,400	1.0	21.0	28.0
167	2,400	2,400	1.0	7.0	9.7
174	2,400	210	0.09	18.0	23.0
181	2,400	2,400	1.0	11.0	21.0
188	2,400	2,400	1.0	520.0	570.0
195	2,400	2,400	1.0	59.0	87.0
202	2,400	2,400	1.0	27.0	50.0

Table 24: Estimated total and fecal coliform bacteria, FC/TC ratio, and total viable aerobic heterotrophic bacteria (TVC) in surface samples at weir 106 (Sellman South).

*TNTC - too numerous to count TC = Total coliforms FC = Fecal coliforms TVC = Total viable counts

	Coli	TVC Incubation			
Day of	тс	FC	FC/TC	48 hr.	7 days
1975	Cells	/100 m1	Ratio	Cells	x 103/m1
209	1630	370	0.23	4.3	7.0
	2300	350	0.15	26.7	46.7
216				140.0	170.0
223	1300	400	0.31		
230	2100	230	0.11	510.0	580.0
237	3200	150	0.05	28.7	34.3
244	4600	1200	0.26	120.0	157.0
251	3400	240	0.07	TNTC*	TNTC
258	900	140	0.16	0.67	2.3
265	1700	610	0.36	4.7	8.7
272	1300	320	0.25	25.3	29.3
280	700	3 80	0.54	3.3	6.3
287	450	450	1.00	77.0	TNTC
293	1200	680	0.57	4.3	6.6
301	160	160	1.00	13.0	13.0
307	200	200	1.00	3.3	6.7
314	660	660	1.00	9.2	10.3
321	160	160	1.00	2.7	5.5
328	210	210	1.00	3.1	5.1
335	_**	280	-	18.3	21.7
342	-	160	-	5.3	6.8
	-		-	1.1	1.6
349	-	30	-		
356	-	180	-	3.0	4.0
363		83	-	3.5	5.3

Table 25: Estimated total and fecal coliform bacteria, FC/TC ratio, and total viable aerobic heterotrophic bacteria in surface samples at weir 106 (Sellman South).

TC = Total coliforms FC = Fecal coliforms TVC = Total viable counts * = Too numerous to count ** = Not tested

		iforms			cubation
Day of	TC	FC	FC/FC	48 hr.	7 days
1975	MPN	/100 ml	Ratio	Cells/n	n1 x 103
			1.0	0.0	4.0
006	4	4	1.0	2.3	4.3
013	_*	-	-	-	-
027	9	9	1.0	8.0	25.0
034	43	9	0.21	TNTC**	TNTC
041	93	4	0.04	TNTC	TNTC
049	15	9 4 3 4	0.2	210.0	550.0
055	21		0.19	TNTC	TNTC
062	93	15	0.16	TNTC	TNTC
069	43	23	0.53	1.0	1.3
076	150	75	0.50	8.3	21.0
083	2,400	2,400	1.0	13.0	53.0
090	43	23	0.53	10.0	13.0
097	75	20	0.27	1.7	15.0
104	93	43	0.46	4.0	6.7
111	23	9 9	0.39	TNTC	TNTC
118	9	9	1.0	5.0	21.0
125	460	460	1.0	47.0	83.0
132	93	4	0.04	16.0	23.0
139	93	3	0.03	11.0	19.0
ן47	460	14	0.03	33.0	40.0
153	2,400	3	0.001	27.0	36.0
160	2,400	2,400	1.0	9.0	13.0
167	2,400	2,400	1.0	5.3	7.7
174	2,400	460	0.19	3.0	6.3
181	2,400	460	0.19	7.3	TNTC
188	2,400	2,400	1.0	59.0	73.0
195	2,400	2,400	1.0	1200.0	TNTC
202	2,400	2,400	1.0	22.0	25.0
		-			

Table 26: Estimated total and fecal coliform bacteria, FC/TC ratio, and total viable aerobic heterotrophic bacteria (TVC) in surface samples at weir 107 (Fox Creek).

* Not tested
**Too numerous to count
TC = Total coliforms
FC = Fecal coliforms
TVC = Total viable counts

	Colif			TVC I	ncubation
Day of	тс	FC	FC/TC	48 hr.	7 days
1975	Cells/	/100 m1	Ratio	Cells	<u>x 10³/ml</u>
	1400	100	0.00		<i>c</i> 7
209	1400	130	0.09	4.0	6.7
216	1900	150	0.08	26.7	36.7
223	3700	50	0.01	40.7	65.5
230	4300	1100	0.26	18.0	21.0
237	1000	45	0.05	11.0	14.0
244	3 800	1200	0.32	180.0	TNTC*
251	1900	330	0.17	7.7	TNTC
258	1900	110	0.06	4.0	4.7
265	2400	610	0.25	7.3	9.0
272	300	5	0.02	98.0	106.0
280	250	10	0.04	13.3	37.0
287	140	5	0.04	34.7	35.6
293	560	25	0.04	21.3	23.3
301	180	15	0.08	10.3	13.3
307	40	25	0.63	4.6	9.3
314	60	60	1.00	3.9	6.0
321	20	10	0.50	4.3	14.0
328	3	3	1.00	3.1	4.5
335	**	10	-	4.0	6.0
342			-	.97	2.4
349		5	-	.87	1.0
356	.=	3	-	2.2	3.5
363	-	5 5 3 5	-	1.7	2.7

Table 27: Estimated total and fecal coliform bacteria, FC/TC ratio, and total viable aerobic heterotrophic bacteria in surface samples at weir 107 (Fox Creek).

TC = Total coliforms FC = Fecal coliforms TVC = Total viable counts * = Too numerous to count ** = Not tested

<u></u>	Col	* <u>*</u>	TVC Incubation		
Day of	тс	FC	FC/TC	48 hr.	7_days
1975	MPN	/100 m1	ratio	Cells/n	n1 x 103
000	~~~	00	0.05	1 0	0.0
006	93	23	0.25	1.0	9.0
013	240	240	1.0	660.0	820.0
027	20	20	1.0	TNTC*	TNTC
034	43	23	0.53	TNTC	TNTC
041	43	23	0.53	TNTC	TNTC
049	150	150	1.0	40.0	85.0
055	210	210	1.0	57.0	120.0
062	240	240	1.0	4.3	19.0
069	2,400	2,400	1.0	13.0	47.0
076	1,100	1,100	1.0	5.0	9.7
083	240	240	1.0	7.7	14.0
090	93	23	0.25	31.0	35.0
097	23	23	1.0	3.0	7.7
104	4	4	1.0	2.3	6.7
111	150	150	1.0	TNTC	TNTC
118	93	93	1.0	TNTC	TNTC
125	43	43	1.0	9.0	30.0
132	240	3	0.01	60.0	110.0
139	93	3 4 3 4	0.04	7.0	25.0
147	240	3	0.01	20.0	40.0
153	460	4	0.01	8.3	12.0
160	1,100	1,100	1.0	18.0	23.0
167	240	240	1.0	2.0	6.0
174	1,100	1,100	1.0	17.0	22.0
181	2,400	2,400	1.0	17.0	22.0
188	2,400	28	0.01	78.0	110.0
195	2,400	2,400	1.0	54.0	65.0
202	2,400	2,400	1.0	32.0	40.0
	-	-			

.

Table 28: Estimated total and fecal coliform bacteria, FC/TC ratio, and total viable aerobic heterotrophic bacteria (TVC) in surface samples at weir 108 (Steinlein).

*TNTC = Too numerous to count TC = Total coliforms FC = Fecal coliforms TVC = Total viable counts

•

	Coli	forms		TVC I	ncubation
Day of	TC	FC	FC/TC	48 hr.	7 days
1975	Cells	/100 m1	Ratio	Cells	x 103/m1
209	930	430	0.46	3.0	6.0
216	850	350	0.41	10.5	11.5
223	550	50	0.09	42.0	50.0
230	1000	95	0.10	7.3	10.7
237	2400	110	0.05	31.0	39.0
244	2500	500	0.20	160.0	180.0
251	1800	150	0.08	9.0	12.3
258	1000	70	0.07	4.5	7.5
265	1100	280	0.25	TNTC*	TNTC
272	1200	180	0.15	8.0	11.0
280	650	115	0.18	17.0	TNTC
287	350	85	0.24	19.0	23.6
293	480	180	0.38	7.0	17.0
301	270	260	0.96	4.3	7.6
307	60	55	0.92	2.3	5.0
314	220	220	1.00	5.7	6.8
322	20	20	1.00	2.8	4.1
328	40	18	0.45	1.8	2.9
335	_**	65	-	5.5	7.3
342	-	15	-	3.1	4.8
349	-	95	_	1.1	3.0
356	-	5	-	1.7	3.6
363	-	10	-	3.2	5.4

Table 29:	Estimated total and fecal coliform bacteria, FC/TC ratio, and
	total viable aerobic heterotrophic bacteria in surface samples at weir 108 (Steinlein).

TC = Total coliforms FC = Fecal coliforms TVC = Total viable counts * = Too numerous to count ** = Not tested

	Strep	otococci		Salmonella
Day of	TS	FS	FC/FS	
1975	MPN	<u>/100 m1</u>	Ratio	MPN/100 m1
006	460	_*		11
006		-	-	23
013	2,400 93	-	-	93
027		16	30.7	43
034	21	15		
041	240	240	0.18	23
049	240	240	1.0	43
055	2,400	2,400	0.01	43
062	460	150	0.29	23
069	240	240	1.9	23
076	1,100	1,100	2.2	2,400
083	2,400	2,400	1.0	2,400
090	93	21	1.1	93
097	240	240	1.9	15
104	9	9	4.8	23
111	28	28	1.4	93
118	240	240	1.9	240
125	20	20	55.0	1,100
132	93	93	0.16	23
139	93	93	0.04	460
146	2,400	2,400	0.01	240
153	460	460	0.02	2,400
160	2,400	2,400	0.08	2,400
167	2,400	2,400	1.0	2,400
174	2,400	2,400	1.0	2,400
181	2,400	2,400	1.0	2,400
188	2,400	2,400	0.46	1,100
195	2,400	2,400	1.0	2,400
202	2,400	2,400	1.0	2,400

Table 30: Estimated total and fecal Streptococci, FC/FS ratio, and <u>Salmonella</u>-like bacteria in surface samples at weir 101 (North Branch).

* = Not tested.

Day of	FS Calle (100 ml	FC/FS	Salmonella	
1975	Cells/100 ml	ratio	MPN/100 m1	
209	1,100	0.27	1,100	
216	2,800	0.11	2,400	
223	1,700	0.15	2,400	
230	1,300	0.27	2,400	
237	1,900	0.06	2,400	
244	3,600	0.27	2,400	
251	750	0.25	2,400	
258	780	0.23	2,400	
265	970	0.26	2,100	
272	420	0.29	4,600	
280	510	0.08	2,400	
287	390	0.64	1,500	
2 9 3	190	0.63	1,500	
301	160	0.09	2,400	
307	120	0.08	430	
314	400	1.10	150	
321	185	_*	230	
328	50	1.00	430	
335	190	0.32	-	
342	140	0.68	-	
349	410	0.10	-	
356	110	0.09	-	
363	40	0.08	-	

.

Table 31:	Estimated fecal Streptococci, FC/FS ratio, and Salmonella-like
•••	bacteria in surface samples at weir 101 (North Branch).

* = Not tested
FS = Fecal Streptococci
FC = Fecal coliforms

.

	Strep	otococci		Salmonella
Day of	TS	FS	FC/FS	
1975	MPN,	/100 m1	Ratio	MPN/100 m1
000	20	_*		22
006	20	- ^	-	23
013	120	-	-	240
027	150	-	-	460
034	150	75	3.2	43
041	2,400	1,100	0.42	43
049	210	23	1.7	93
055	240	240	0.39	43
062	3	3	5.0	23
069	14	9	4.7	93
076	210	210	1.1	1,100
083	1,100	1,100	2.2	460
090	23	3	31.0	1,100
097	43	43	1.0	75
104		4	115.0	43
111	4 7	7	66.0	1,100
118	23	23	20.0	75
125	93	93	2.6	75
132	150	20	0.45	460
139	93	93	0.03	75
146	460	460	0.01	460
153	1,100	1,100	0.003	2,400
160	2,400	2,400	1.0	1,100
167	2,400	2,400	1.0	2,400
174	2,400	2,400	.46	2,400
181	1,100	1,100	2.2	2,400
188	noflow	noflow	noflow	noflow
195	2,400	2,400	1.0	2,400
202	2,400	2,400	1.0	2,400
_ 	-,	_,		

Table 32: Estimated total and fecal Streptococci, FC/FS ratio, and <u>Salmonella</u>-like bacteria in surface samples at weir 102 (Blue Jay Branch).

* = Not tested.

Day of 1975	FS Cells/100 ml	FC/FS ratio	Salmonella MPN/100 ml	
209	1,100	0.09	2,400	
216	4,100	0.04	2,400	
223	2,300	0.17	2,400	
230	1,900	0.17	2,400	
237	3,400	0.06	2,400	
244	6,600	0.33	2,400	
251	700	0.37	2,400	
258	840	0.38	1,100	
265	590	0.47	2,400	
272	1,000	0.21	4,600	
280	510	0.10	2,400	
287	650	0.22	430	
293	400	0.55	4,600	
301	410	0.29	2,400	
307	260	0.21	1,500	
314	1,200	0.26	930	
321	260	1.00	930	
328	70	0.93	230 _*	
335	370	0.78	_*	
342	95	0.16	-	
349	90	0.22	-	
356	230	0.83	-	
363	78	0.51	-	

Table 33:	Estimated fecal Streptococci, FC/FS ratio, and Salmonella-like
	bacteria in surface samples at weir 102 (Blue Jay Branch).

* = Not tested
FS = Fecal Streptococci
FC = Fecal coliforms

•

	Strep	otococci		Salmonella
Day of	TS	FS	FC/FS	
1975	MPN	/100 m1	Ratio	MPN/100 m1
006	23	_*	-	43
013	2,400	-	-	240
027	9	-	-	460
034	23	23	1.9	23
041	2,400	93	0.46	23
049	460	460	1.0	93
055	460	150	0.29	93
062	9	4	23.3	93
069	43	15	2.9	23
076	93	93	2.6	39
083	460	460	5.2	1,100
090	4	4	5.8	93
097	23	23	1.9	20
104	4	4	9.8	23
111	9	9	2.6	93
118	15	15	1.5	43
125	23	23	10.4	240
132	23	9	1.0	2,400
139	93	93	0.04	150
146	150	150	0.02	2,400
153	460	460	0.01	2,400
160	2,400	2,400	0.19	75
167	2,400	2,400	1.0	2,400
174	1,100	1,100	.42	2,400
181	240	240	10.0	1,100
188	no flow	no flow	no flow	no flow
195	2,400	2,4 0 0	1.0	2,400
202	2,400	2,400	1.0	2,400

Table 34: Estimated total and fecal Streptococci, FC/FS ratio, and <u>Salmonella</u>-like bacteria in surface samples at weir 103 (Williamson Branch).

* = not tested.

Day of 1975	FS Cells/100 ml	FC/FS Ratio	Salmonella MPN/100 ml
209	800	0.16	1,100
209	2,100	0.05	2,400
223	900	0.17	2,400
230	650	0.20	2,400
230	_*	-	2,400
244	6,000	0.42	2,400
251	800	0.16	1,500
258	490	0.57	2,400
265	660	0.15	930
272	360	0.53	11,000
280	270	0.31	930
287	330	0.15	430
293	200	0.70	4,600
301	210	0.21	750
307	70	0.29	930
314	790	0.14	750
322	90	0.78	430
328	140	0.18	230
335	210	0.45	-
342	100	1.30	-
349	55	0.36	-
356	20	5.50	-
363	40	0.38	-

Table 35:	Estimated fecal Streptococci, FC/FS	ratio, and Salmonella-like
	bacteria in surface samples at weir	103 (Williamson Branch).

* = Not tested
FS = Fecal Streptococci
FC = Fecal coliforms

	Stre	otococci		Salmonella
Day of	TS .	FS	FC/FS	
1975		/100 ml	Ratio	MPN/100 m1
0.00	7.5	-		2
006	15	_*	-	3
013	2,400	-	-	240
027	43	-	-	93
034	240	240	0.63	93
041	1,000	9	10.3	20
049	12	7	34.3	1,100
055	39	39	1.1	23
062	43	43	1.0	23
069	93	93	2.6	. 460
076	1,100	1,100	0.42	460
083	1,100	1,100	0.22	43
090	23	23	10.4	75
097	75	75	0.31	240
104	4	4	600.0	9
111	7	7	6.1	21
118	15	15	2.9	4
125	240	240	1.0	240
132	4	4	23.3	1,100
139	93	93	0.04	240
146	1,100	1,100	0.01	· 150
153	1,100	1,100	0.003	1,100
160	2,400	2,400	0.08	1,100
167	2,400	2,400	1.0	2,400
174	2,400	2,400	1.0	2,400
181	2,400	1,100	2.2	2,400
188	1,100	210	2.2	460
195	2,400	2,400	1.0	2,400
202	2,400	2,400	1.0	2,400
	-			

Table 36: Estimated total and fecal Streptococci, FC/FS ratio, and <u>Salmonella</u>-like bacteria in surface samples at weir 105 (Sellman North).

* = Not tested.

1

Day of	FS	FC/FS	Salmonella
1975	Cells/100 ml	Ratio	MPN/100 m1
209	2,200	0.20	1,100
216	3,900	0.03	2,400
223	4,000	0.13	2,400
230	1,300	0.30	2,400
237	2,000	0.34	2,400
244	5,100	0.11	2,400
251	1,500	0.15	2,400
258	520	0.47	2,400
265	580	0.48	4,600
272	550	0.58	4,600
280	480	0.13	2,400
287	330	0.67	1,200
293	210	0.52	230
301	145	0.83	430
307	590	1.69	2,400
314	1,200	0.66	930
321	70	0.50	230
328	25	2.20	150
335	270	0.48	_*
342	65	1.31	-
349	35	0.57	-
356	75	0.07	-
363	150	0.73	-

Table 37:	Estimated fecal Streptococci, FC/FS ratio, and Salmonella-like
	bacteria in surface samples at weir 105 (Sellman North).

* = Not tested
FS = Fecal Streptococci
FC = Fecal coliforms

.

	Strep	tococci		Salmonella
Day of	TS	FS	FC/FS	
1975	MPN/	100 m1	Ratio	MPN/100 m1
006	460	_*	_	9
013	2,400	_	_	240
027	14	_	_	43
034	1,100	1,100	0.22	15
041	2,400	460	2.4	93
049	1,100	1,100	0.19	240
055	460	150	3,1	23
062	150	93	4.9	43
069	240	240	1.0	43
076	1,100	1,100	2.2	2,400
083	1,100	1,100	2.2	240
090	93	93	0.81	150
097	43	43	4.9	43
104	1,100	1,100	0.14	39
111	11	11	3.9	93
118	93	93	5.0	150
125	93	93	5.0	43
132	460	460	0.46	460
139	460	460	0.33	1,100
146	2,400	2,400	0.04	2,400
153	2,400	2,400	0.001	2,400
160	2,400	2,400	1.0	2,400
167	2,400	2,400	1.0	2,400
174	2,400	2,400	0.09	2,400
181	2,400	2,400	1.0	2,400
188	1,100	1,100	2.2	2,400
195	2,400	2,400	1.0	2,400
202	2,400	2,400	1.0	2,400

Table 38: Estimated total and fecal Streptococci, FC/FS ratio, and <u>Salmonella</u>-like bacteria in surface samples at weir 106 (Sellman South).

* = Not tested.

.

Day of 1975	FS Cells/100 ml	FC/FS Ratio	Salmonella MPN/100 ml
209	1,600	0.23	1,100
216	2,400	0.15	2,400
223	850	0.47	2,400
230	700	0.33	2,400
237	3,300	0.05	2,400
244	5,500	0.22	2,400
251	650	0.37	11,000
258	280	0.50	2,400
265	760	0.80	11,000
272	420	0.76	2,400
280	420	0.90	4,600
287	950	0.47	750
293	360	1.89	930
301	110	1.45	4,600
307	190	1.05	750
314	450	1.47	2,400
321	190	0.84	230
328	520	0.40	230
335	470	0.60	_*
342	390	0.41	-
349	35	0.86	-
356	460	0.39	-
363	200	0.42	-

Table	39:	Estimated fecal Streptococci, FC/FS ratio, and Salmonella-like
		bacteria in surface samples at weir 106 (Sellman South).

* = Not tested
FS = Fecal Streptococci
FC = Fecal coliforms

•

	Strep	tococci		Salmonella
Day of	TS	FS	FC/FS	
1975		100 m1	Ratio	MPN/100 m1
006	43	_*	-	4
013	-	-	-	- -
027	9	-	-	23
034	9 3	3	3.0	23
041	28	20	0.2	9
049	25	15	0.2	1,100
055	93	21	0.19	23
062	9	4	3.8	23
069	43	43	0.53	4
076	150	150	0.5	2,400
083	2,400	2,400	1.0	2,400
090	240	240	0.10	93
097	240	240	0.08	4
104	43	43	1.0	23
111	150	150	0.06	15
118	21	21	0.43	4
125	93	93	5.0	23
132	240	240	0.02	93
139	460	460	0.01	93
146	2,400	2,400	0.01	2,400
153	1,100	1,100	0.003	2,400
160	2,400	2,400	1.0	2,400
167	2,400	2,400	1.0	2,400
174	2,400	2,400	0.19	1,100
181	1,100	1,100	0.42	2,400
188	2,400	2,400	1.0	2,400
195	2,400	2,400	1.0	2,400
202	2,400	2,400	1.0	1,100

Table 40: Estimated total and fecal Streptococci, FC/FS ratio; and <u>Salmonella-like</u> bacteria in surface samples at weir 107 (Fox Creek).

* = Not tested.

ay of 1975	FS Cells/100 ml	FC/FS Ratio	Salmonella MPN/100 ml
<u></u>			·
209	1,300	0.10	2,400
216	4,500	0.03	2,400
223	28,000	0.01	2,400
230	1,900	0.58	2,400
237	1,800	0.03	2,400
244	4,600	0.26	2,400
251	1,900	0.17	750
258	2,100	0.05	1,100
265	1,400	0.44	2,400
272	320	0.02	430
280	330	0.03	2,400
287	490	0.01	430
293	250	0.10	1,200
301	130	0.12	1,500
307	110	0.23	1,500
314	660	0.09	230
321	170	0.06	90
328	30	0.10	9 0
335	950	0.01	_*
342	20	0.25	-
349	10	0.50	-
356	40	0.08	-
363	13	0.38	-

Table 41: Estimated fecal Streptococci, FC/FS ratio, and Salmonella-like bacteria in surface samples at weir 107 (Fox Creek).

* = Not tested
FS = Fecal Streptococci
FC = Fecal coliforms

	Strei	otococci		Salmonella
Day of	TS	FS	FC/FS	
1975		/100 m1	Ratio	MPN/100 m1
000	0	_*		16
006	9	_*	-	15
013	1,100	-	-	240
027	43	-	-	21
034	20	20	1.2	23
041	-	3 3	7.7	4
049	21	3	50.0	460
055	240	240	0.88	43
062	9	9	26 . 7	75
069	240	240	10.0	460
076	21	11	100.0	23
083	93	93	2.6	43
090	23	. 9	2.6	43
097	240	240	0.1	93
104	43	43	0.10	20
111	15	15	10.0	23
118	9	9	10.3	43
125	93	93	0.46	240
132	15	15	0.2	460
139	43	43	0.09	150
146	2,400	2,400	0.001	210
153	1,100	1,100	0.004	2,400
160	1,100	1,100	1.0	240
167	460	460	0.52	1,100
174	2,400	2,400	0.46	2,400
181	2,400	2,400	1.0	2,400
188	2,400	2,400	0.01	2,400
195	2,400	2,400	1.0	1,100
202	2,400	2,400	1.0	2,400
	_,	-,		

Table 42: Estimated total and fecal Streptococci, FC/FS ratio, and Salmonella-like bacteria in surface samples at weir 108 (Steinlein).

* = Not tested.

Day of 1975	FS Cells/100 ml	FC/FS Ratio	Salmonella MPN/100 ml
209	1,700	0.25	2,400
216	2,000	0.18	2,400
223	1,500	0.03	2,400
230	1,900	0.05	2,400
237	2,100	0.05	2,400
244	4,900	0.10	2,400
251	1,000	0.15	2,400
258	710	0.10	2,400
265	1,100	0.25	1,500
272	370	0.49	11,000
280	300	0.38	750
287	350	0.24	930
293	260	0.69	4,600
301	390	0.67	4,600
307	150	0.37	_*
314	500	0.44	430
322	45	0.44	230
328	25	0.72	430
335	90	0.72	-
342	90	0.17	-
349	13	7.31	-
356	15	0.33	-
363	25	0.40	-

Table 43: Estimated fecal Streptococci, FC/FS ratio, and Salmonella-like bacteria in surface samples at weir 108 (Steinlein).

* = Not tested
FS = Fecal Streptococci
FC = Fecal coliforms